Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils : a systematic review

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Martínez-Parga-Méndez, Madigan
González, Mitza
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Frontiers in Environmental Science. Frontiers. 2024, 12, 1379283. eISSN 2296-665X. Verfügbar unter: doi: 10.3389/fenvs.2024.1379283
Zusammenfassung

Sorption is a key process to understand the environmental fate of pollutants on soils, conduct preliminary risk assessments and fill information gaps. Quantitative Structure-Activity Relationships (QSAR) and Pedotransfer Functions (PTF) are the most common approaches used in the literature to predict sorption. Both models use different outcomes and follow different simplification strategies to represent data. However, the impact of those differences on the interpretation of sorption trends and application of models for regulatory purposes is not well understood. We conducted a systematic review to contextualize the requirements for developing, interpreting, and applying predictive models in different scenarios of environmental concern by using pesticides as a globally relevant organic pollutant model. We found disagreements between predictive model assumptions and empirical information from the literature that affect their reliability and suitability. Additionally, we found that both model procedures are complementary and can improve each other by combining the data treatment and statistical validation applied in PTF and QSAR models, respectively. Our results expose how relevant the methodological and environmental conditions and the sources of variability studied experimentally are to connect the representational value of data with the applicability domain of predictive models for scientific and regulatory decisions. We propose a set of empirical correlations to unify the sorption mechanisms within the dataset with the selection of a proper kind of model, solving apparent incompatibilities between both models, and between model assumptions and empirical knowledge. The application of our proposal should improve the representativity and quality of predictive models by adding explicit conditions and requirements for data treatment, selection of outcomes and predictor variables (molecular descriptors versus soil properties, or both), and an expanded applicability domain for pollutant-soil interactions in specific environmental conditions, helping the decision-making process in regard to both scientific and regulatory concerns (in the following, the scientific and regulatory dimensions).

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
environmental fate, organic pollutants, pesticides, decision-making, model interpretation
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690NEIRA ALBORNOZ, Angelo Javier, Madigan MARTÍNEZ-PARGA-MÉNDEZ, Mitza GONZÁLEZ, Andreas SPITZ, 2024. Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils : a systematic review. In: Frontiers in Environmental Science. Frontiers. 2024, 12, 1379283. eISSN 2296-665X. Verfügbar unter: doi: 10.3389/fenvs.2024.1379283
BibTex
@article{NeiraAlbornoz2024-08-13Under-70722,
  year={2024},
  doi={10.3389/fenvs.2024.1379283},
  title={Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils : a systematic review},
  volume={12},
  journal={Frontiers in Environmental Science},
  author={Neira Albornoz, Angelo Javier and Martínez-Parga-Méndez, Madigan and González, Mitza and Spitz, Andreas},
  note={Article Number: 1379283}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70722">
    <dcterms:title>Understanding requirements, limitations and applicability of QSAR and PTF models for predicting sorption of pollutants on soils : a systematic review</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Neira Albornoz, Angelo Javier</dc:contributor>
    <dcterms:issued>2024-08-13</dcterms:issued>
    <dc:creator>Spitz, Andreas</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70722"/>
    <dcterms:abstract>Sorption is a key process to understand the environmental fate of pollutants on soils, conduct preliminary risk assessments and fill information gaps. Quantitative Structure-Activity Relationships (QSAR) and Pedotransfer Functions (PTF) are the most common approaches used in the literature to predict sorption. Both models use different outcomes and follow different simplification strategies to represent data. However, the impact of those differences on the interpretation of sorption trends and application of models for regulatory purposes is not well understood. We conducted a systematic review to contextualize the requirements for developing, interpreting, and applying predictive models in different scenarios of environmental concern by using pesticides as a globally relevant organic pollutant model. We found disagreements between predictive model assumptions and empirical information from the literature that affect their reliability and suitability. Additionally, we found that both model procedures are complementary and can improve each other by combining the data treatment and statistical validation applied in PTF and QSAR models, respectively. Our results expose how relevant the methodological and environmental conditions and the sources of variability studied experimentally are to connect the representational value of data with the applicability domain of predictive models for scientific and regulatory decisions. We propose a set of empirical correlations to unify the sorption mechanisms within the dataset with the selection of a proper kind of model, solving apparent incompatibilities between both models, and between model assumptions and empirical knowledge. The application of our proposal should improve the representativity and quality of predictive models by adding explicit conditions and requirements for data treatment, selection of outcomes and predictor variables (molecular descriptors versus soil properties, or both), and an expanded applicability domain for pollutant-soil interactions in specific environmental conditions, helping the decision-making process in regard to both scientific and regulatory concerns (in the following, the scientific and regulatory dimensions).</dcterms:abstract>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>González, Mitza</dc:contributor>
    <dc:creator>González, Mitza</dc:creator>
    <dc:creator>Martínez-Parga-Méndez, Madigan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:creator>Neira Albornoz, Angelo Javier</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-04T10:42:55Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-04T10:42:55Z</dcterms:available>
    <dc:contributor>Martínez-Parga-Méndez, Madigan</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen