Well-posedness of a quasilinear hyperbolic fluid model

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:6821cdc092e3e17c35c4b83ab9ed674e

RACKE, Reinhard, Jürgen SAAL, 2010. Well-posedness of a quasilinear hyperbolic fluid model

@techreport{Racke2010Wellp-699, series={Konstanzer Schriften in Mathematik}, title={Well-posedness of a quasilinear hyperbolic fluid model}, year={2010}, number={267}, author={Racke, Reinhard and Saal, Jürgen} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/699"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:33Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saal, Jürgen</dc:creator> <dc:contributor>Racke, Reinhard</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/699"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:33Z</dcterms:available> <dc:creator>Racke, Reinhard</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations.For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/699/1/hypnsloc.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/699/1/hypnsloc.pdf"/> <dc:contributor>Saal, Jürgen</dc:contributor> <dcterms:title>Well-posedness of a quasilinear hyperbolic fluid model</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>deposit-license</dc:rights> <dcterms:issued>2010</dcterms:issued> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

hypnsloc.pdf 52

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto