Ultra-fast interpretable machine-learning potentials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
U.S. National Science Foundation (NSF): DMS 1440415
U.S. National Science Foundation (NSF): DMS-1440415
European Union (EU): 952165
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
All-atom dynamics simulations are an indispensable quantitative tool in physics, chemistry, and materials science, but large systems and long simulation times remain challenging due to the trade-off between computational efficiency and predictive accuracy. To address this challenge, we combine effective two- and three-body potentials in a cubic B-spline basis with regularized linear regression to obtain machine-learning potentials that are physically interpretable, sufficiently accurate for applications, as fast as the fastest traditional empirical potentials, and two to four orders of magnitude faster than state-of-the-art machine-learning potentials. For data from empirical potentials, we demonstrate the exact retrieval of the potential. For data from density functional theory, the predicted energies, forces, and derived properties, including phonon spectra, elastic constants, and melting points, closely match those of the reference method. The introduced potentials might contribute towards accurate all-atom dynamics simulations of large atomistic systems over long-time scales.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
XIE, Stephen R., Matthias RUPP, Richard G. HENNIG, 2023. Ultra-fast interpretable machine-learning potentials. In: npj Computational Materials. Springer. 2023, 9, 162. eISSN 2057-3960. Available under: doi: 10.1038/s41524-023-01092-7BibTex
@article{Xie2023Ultra-69286, year={2023}, doi={10.1038/s41524-023-01092-7}, title={Ultra-fast interpretable machine-learning potentials}, volume={9}, journal={npj Computational Materials}, author={Xie, Stephen R. and Rupp, Matthias and Hennig, Richard G.}, note={Article Number: 162} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69286"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69286/1/Xie_2-1e7lbcqjdgj0f0.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69286"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69286/1/Xie_2-1e7lbcqjdgj0f0.pdf"/> <dc:creator>Xie, Stephen R.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:24:48Z</dc:date> <dcterms:abstract>All-atom dynamics simulations are an indispensable quantitative tool in physics, chemistry, and materials science, but large systems and long simulation times remain challenging due to the trade-off between computational efficiency and predictive accuracy. To address this challenge, we combine effective two- and three-body potentials in a cubic B-spline basis with regularized linear regression to obtain machine-learning potentials that are physically interpretable, sufficiently accurate for applications, as fast as the fastest traditional empirical potentials, and two to four orders of magnitude faster than state-of-the-art machine-learning potentials. For data from empirical potentials, we demonstrate the exact retrieval of the potential. For data from density functional theory, the predicted energies, forces, and derived properties, including phonon spectra, elastic constants, and melting points, closely match those of the reference method. The introduced potentials might contribute towards accurate all-atom dynamics simulations of large atomistic systems over long-time scales.</dcterms:abstract> <dcterms:issued>2023</dcterms:issued> <dc:creator>Hennig, Richard G.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-09T07:24:48Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Xie, Stephen R.</dc:contributor> <dc:contributor>Hennig, Richard G.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Ultra-fast interpretable machine-learning potentials</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Rupp, Matthias</dc:creator> <dc:contributor>Rupp, Matthias</dc:contributor> </rdf:Description> </rdf:RDF>