What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter

Lade...
Vorschaubild
Dateien
Spinde_2-1xg3flbl3rbmc0.pdf
Spinde_2-1xg3flbl3rbmc0.pdfGröße: 1.54 MBDownloads: 11
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Online Social Networks and Media. Elsevier. 2023, 37-38, 100264. eISSN 2468-6964. Available under: doi: 10.1016/j.osnem.2023.100264
Zusammenfassung

News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage.

This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles.

Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
Media bias, Sentiment analysis, Hate speech detection, Transfer learning
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPINDE, Timo, Elisabeth RICHTER, Martin WESSEL, Juhi KULSHRESTHA, Karsten DONNAY, 2023. What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter. In: Online Social Networks and Media. Elsevier. 2023, 37-38, 100264. eISSN 2468-6964. Available under: doi: 10.1016/j.osnem.2023.100264
BibTex
@article{Spinde2023Twitt-67762,
  year={2023},
  doi={10.1016/j.osnem.2023.100264},
  title={What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter},
  volume={37-38},
  journal={Online Social Networks and Media},
  author={Spinde, Timo and Richter, Elisabeth and Wessel, Martin and Kulshrestha, Juhi and Donnay, Karsten},
  note={Article Number: 100264}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67762">
    <dc:contributor>Kulshrestha, Juhi</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dcterms:abstract>News stories circulating online, especially on social media platforms, are nowadays a primary source of information. Given the nature of social media, news no longer are just news, but they are embedded in the conversations of users interacting with them. This is particularly relevant for inaccurate information or even outright misinformation because user interaction has a crucial impact on whether information is uncritically disseminated or not. Biased coverage has been shown to affect personal decision-making. Still, it remains an open question whether users are aware of the biased reporting they encounter and how they react to it. The latter is particularly relevant given that user reactions help contextualize reporting for other users and can thus help mitigate but may also exacerbate the impact of biased media coverage.

This paper approaches the question from a measurement point of view, examining whether reactions to news articles on Twitter can serve as bias indicators, i.e., whether how users comment on a given article relates to its actual level of bias. We first give an overview of research on media bias before discussing key concepts related to how individuals engage with online content, focusing on the sentiment (or valance) of comments and on outright hate speech. We then present the first dataset connecting reliable human-made media bias classifications of news articles with the reactions these articles received on Twitter. We call our dataset BAT - Bias And Twitter. BAT covers 2,800 (bias-rated) news articles from 255 English-speaking news outlets. Additionally, BAT includes 175,807 comments and retweets referring to the articles.

Based on BAT, we conduct a multi-feature analysis to identify comment characteristics and analyze whether Twitter reactions correlate with an article’s bias. First, we fine-tune and apply two XLNet-based classifiers for hate speech detection and sentiment analysis. Second, we relate the results of the classifiers to the article bias annotations within a multi-level regression. The results show that Twitter reactions to an article indicate its bias, and vice-versa. With a regression coefficient of 0.703 (), we specifically present evidence that Twitter reactions to biased articles are significantly more hateful. Our analysis shows that the news outlet’s individual stance reinforces the hate-bias relationship. In future work, we will extend the dataset and analysis, including additional concepts related to media bias.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Richter, Elisabeth</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Spinde, Timo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kulshrestha, Juhi</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dc:creator>Spinde, Timo</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dcterms:available>
    <dc:creator>Richter, Elisabeth</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67762/1/Spinde_2-1xg3flbl3rbmc0.pdf"/>
    <dc:creator>Wessel, Martin</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>What do Twitter comments tell about news article bias? : Assessing the impact of news article bias on its perception on Twitter</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67762"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-09-12T07:44:20Z</dc:date>
    <dc:contributor>Wessel, Martin</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen