KOPS - The Institutional Repository of the University of Konstanz

Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization

Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization

Cite This

Files in this item

Checksum: MD5:b51650278172714e4d31e0ae494650fb

DENK, Robert, Leonid R. VOLEVIČ, 2008. Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization

@techreport{Denk2008Parab-672, series={Konstanzer Schriften in Mathematik und Informatik}, title={Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization}, year={2008}, number={243}, author={Denk, Robert and Volevič, Leonid R.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/672"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:27Z</dcterms:available> <dc:contributor>Denk, Robert</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:27Z</dc:date> <dcterms:title>Parabolic boundary value problems connected with Newton's polygon and some problems of crystallization</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/672/1/research_paper_243.pdf"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">A new class of boundary value problems for parabolic operators is introduced which is based on the Newton polygon method. We show unique solvability and a priori estimates in corresponding L2-Sobolev spaces. As an application, we discuss some linearized free boundary problems arising in crystallization theory which do not satisfy the classical parabolicity condition. It is shown that these belong to the new class of parabolic boundary value problems, and two-sided estimates for their solutions are obtained.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/672"/> <dc:format>application/pdf</dc:format> <dc:creator>Denk, Robert</dc:creator> <dc:creator>Volevič, Leonid R.</dc:creator> <dcterms:issued>2008</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/672/1/research_paper_243.pdf"/> <dc:contributor>Volevič, Leonid R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

research_paper_243.pdf 151

This item appears in the following Collection(s)

Search KOPS


Browse

My Account