Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis

Lade...
Vorschaubild
Dateien
Ge_2-oze9banfmqe35.pdf
Ge_2-oze9banfmqe35.pdfGröße: 1.49 MBDownloads: 9
Datum
2024
Autor:innen
Ge, Tong
Luo, Xu
Wang, Yunhai
Sedlmair, Michael
Cheng, Zhanglin
Zhao, Ying
Chen, Baoquan
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 422037984
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(8), S. 5034-5046. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2023.3284499
Zusammenfassung

We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GE, Tong, Xu LUO, Yunhai WANG, Michael SEDLMAIR, Zhanglin CHENG, Ying ZHAO, Xin LIU, Oliver DEUSSEN, Baoquan CHEN, 2024. Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(8), S. 5034-5046. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2023.3284499
BibTex
@article{Ge2024-08Optim-67097,
  year={2024},
  doi={10.1109/tvcg.2023.3284499},
  title={Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis},
  number={8},
  volume={30},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={5034--5046},
  author={Ge, Tong and Luo, Xu and Wang, Yunhai and Sedlmair, Michael and Cheng, Zhanglin and Zhao, Ying and Liu, Xin and Deussen, Oliver and Chen, Baoquan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67097">
    <dc:creator>Luo, Xu</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67097/1/Ge_2-oze9banfmqe35.pdf"/>
    <dc:contributor>Luo, Xu</dc:contributor>
    <dc:contributor>Ge, Tong</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Liu, Xin</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67097/1/Ge_2-oze9banfmqe35.pdf"/>
    <dc:creator>Ge, Tong</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Wang, Yunhai</dc:creator>
    <dc:creator>Cheng, Zhanglin</dc:creator>
    <dc:contributor>Zhao, Ying</dc:contributor>
    <dcterms:abstract>We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.</dcterms:abstract>
    <dc:contributor>Cheng, Zhanglin</dc:contributor>
    <dcterms:title>Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-14T05:09:25Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67097"/>
    <dc:contributor>Chen, Baoquan</dc:contributor>
    <dc:contributor>Liu, Xin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-14T05:09:25Z</dc:date>
    <dc:creator>Chen, Baoquan</dc:creator>
    <dc:creator>Zhao, Ying</dc:creator>
    <dcterms:issued>2024-08</dcterms:issued>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen