Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GE, Tong, Xu LUO, Yunhai WANG, Michael SEDLMAIR, Zhanglin CHENG, Ying ZHAO, Xin LIU, Oliver DEUSSEN, Baoquan CHEN, 2024. Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 2024, 30(8), S. 5034-5046. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/tvcg.2023.3284499BibTex
@article{Ge2024-08Optim-67097, year={2024}, doi={10.1109/tvcg.2023.3284499}, title={Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis}, number={8}, volume={30}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={5034--5046}, author={Ge, Tong and Luo, Xu and Wang, Yunhai and Sedlmair, Michael and Cheng, Zhanglin and Zhao, Ying and Liu, Xin and Deussen, Oliver and Chen, Baoquan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67097"> <dc:creator>Luo, Xu</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67097/1/Ge_2-oze9banfmqe35.pdf"/> <dc:contributor>Luo, Xu</dc:contributor> <dc:contributor>Ge, Tong</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Wang, Yunhai</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Sedlmair, Michael</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Liu, Xin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67097/1/Ge_2-oze9banfmqe35.pdf"/> <dc:creator>Ge, Tong</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Wang, Yunhai</dc:creator> <dc:creator>Cheng, Zhanglin</dc:creator> <dc:contributor>Zhao, Ying</dc:contributor> <dcterms:abstract>We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis.</dcterms:abstract> <dc:contributor>Cheng, Zhanglin</dc:contributor> <dcterms:title>Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-14T05:09:25Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67097"/> <dc:contributor>Chen, Baoquan</dc:contributor> <dc:contributor>Liu, Xin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-14T05:09:25Z</dc:date> <dc:creator>Chen, Baoquan</dc:creator> <dc:creator>Zhao, Ying</dc:creator> <dcterms:issued>2024-08</dcterms:issued> <dc:contributor>Sedlmair, Michael</dc:contributor> </rdf:Description> </rdf:RDF>