A simple tool for linking photo-identification with multimedia data to track mammal behaviour

Lade...
Vorschaubild
Dateien
Machado_2-4yz8b3349pgb0.pdf
Machado_2-4yz8b3349pgb0.pdfGröße: 2.19 MBDownloads: 11
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mammalian Biology. Springer. 2022, 102(3), pp. 983-993. ISSN 1616-5047. eISSN 1618-1476. Available under: doi: 10.1007/s42991-021-00189-0
Zusammenfassung

Identifying individual animals is critical to describe demographic and behavioural patterns, and to investigate the ecological and evolutionary underpinnings of these patterns. The traditional non-invasive method of individual identification in mammals—comparison of photographed natural marks—has been improved by coupling other sampling methods, such as recording overhead video, audio and other multimedia data. However, aligning, linking and syncing these multimedia data streams are persistent challenges. Here, we provide computational tools to streamline the integration of multiple techniques to identify individual free-ranging mammals when tracking their behaviour in the wild. We developed an open-source R package for organizing multimedia data and for simplifying their processing a posteriori—“MAMMals: Managing Animal MultiMedia: Align, Link, Sync”. The package contains functions to (i) align and link the individual data from photographs to videos, audio recordings and other text data sources (e.g. GPS locations) from which metadata can be accessed; and (ii) synchronize and extract the useful multimedia (e.g. videos with audios) containing photo-identified individuals. To illustrate how these tools can facilitate linking photo-identification and video behavioural sampling in situ, we simultaneously collected photos and videos of bottlenose dolphins using off-the-shelf cameras and drones, then merged these data to track the foraging behaviour of individuals and groups. We hope our simple tools encourage future work that extend and generalize the links between multiple sampling platforms of free-ranging mammals, thereby improving the raw material needed for generating new insights in mammalian population and behavioural ecology.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690MACHADO, Alexandre M. S., Mauricio CANTOR, 2022. A simple tool for linking photo-identification with multimedia data to track mammal behaviour. In: Mammalian Biology. Springer. 2022, 102(3), pp. 983-993. ISSN 1616-5047. eISSN 1618-1476. Available under: doi: 10.1007/s42991-021-00189-0
BibTex
@article{Machado2022simpl-66653,
  year={2022},
  doi={10.1007/s42991-021-00189-0},
  title={A simple tool for linking photo-identification with multimedia data to track mammal behaviour},
  number={3},
  volume={102},
  issn={1616-5047},
  journal={Mammalian Biology},
  pages={983--993},
  author={Machado, Alexandre M. S. and Cantor, Mauricio}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66653">
    <dcterms:title>A simple tool for linking photo-identification with multimedia data to track mammal behaviour</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>Identifying individual animals is critical to describe demographic and behavioural patterns, and to investigate the ecological and evolutionary underpinnings of these patterns. The traditional non-invasive method of individual identification in mammals—comparison of photographed natural marks—has been improved by coupling other sampling methods, such as recording overhead video, audio and other multimedia data. However, aligning, linking and syncing these multimedia data streams are persistent challenges. Here, we provide computational tools to streamline the integration of multiple techniques to identify individual free-ranging mammals when tracking their behaviour in the wild. We developed an open-source R package for organizing multimedia data and for simplifying their processing a posteriori—“MAMMals: Managing Animal MultiMedia: Align, Link, Sync”. The package contains functions to (i) align and link the individual data from photographs to videos, audio recordings and other text data sources (e.g. GPS locations) from which metadata can be accessed; and (ii) synchronize and extract the useful multimedia (e.g. videos with audios) containing photo-identified individuals. To illustrate how these tools can facilitate linking photo-identification and video behavioural sampling in situ, we simultaneously collected photos and videos of bottlenose dolphins using off-the-shelf cameras and drones, then merged these data to track the foraging behaviour of individuals and groups. We hope our simple tools encourage future work that extend and generalize the links between multiple sampling platforms of free-ranging mammals, thereby improving the raw material needed for generating new insights in mammalian population and behavioural ecology.</dcterms:abstract>
    <dc:creator>Machado, Alexandre M. S.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-18T08:50:06Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Machado, Alexandre M. S.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-18T08:50:06Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66653"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Cantor, Mauricio</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66653/1/Machado_2-4yz8b3349pgb0.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66653/1/Machado_2-4yz8b3349pgb0.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Cantor, Mauricio</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja