Elliptic boundary value problems with large parameter for mixed order systems

Thumbnail Image
Date
2002
Authors
Volevič, Leonid R.
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Translations Series 2 / American Mathematical Society ; 206 (2002). - pp. 29-64
Abstract
In this paper boundary value problems are studied for systems with large parameter, elliptic in the sense of Douglis-Nirenberg. We restrict ourselves on model problems acting in the half-space. It is possible to define parameter-ellipticity for such problems, in particular we formulate Shapiro-Lopatinskii type conditions on the boundary operators. It can be shown that parameter-elliptic boundary value problems are uniquely solvable and that their solutions satisfy uniform a priori estimates in parameter-dependent norms. We essentially use ideas from Newton's polygon method and of Vishik-Lyusternik boundary layer theory.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Mixed order systems,Douglis-Nirenberg systems,ellipticity with parameter,a priori estimate
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690DENK, Robert, Leonid R. VOLEVIČ, 2002. Elliptic boundary value problems with large parameter for mixed order systems. In: Translations Series 2 / American Mathematical Society. 206, pp. 29-64
BibTex
@article{Denk2002Ellip-662,
  year={2002},
  title={Elliptic boundary value problems with large parameter for mixed order systems},
  volume={206},
  journal={Translations Series 2 / American Mathematical Society},
  pages={29--64},
  author={Denk, Robert and Volevič, Leonid R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/662">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/662/1/rd26.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:title>Elliptic boundary value problems with large parameter for mixed order systems</dcterms:title>
    <dc:creator>Volevič, Leonid R.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Volevič, Leonid R.</dc:contributor>
    <dcterms:issued>2002</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: Translations Series 2 / American Mathematical Society 206 (2002), pp. 29-64</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/662/1/rd26.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/662"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:25Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:25Z</dc:date>
    <dcterms:abstract xml:lang="eng">In this paper boundary value problems are studied for systems with large parameter, elliptic in the sense of Douglis-Nirenberg. We restrict ourselves on model problems acting in the half-space. It is possible to define parameter-ellipticity for such problems, in particular we formulate Shapiro-Lopatinskii type conditions on the boundary operators. It can be shown that parameter-elliptic boundary value problems are uniquely solvable and that their solutions satisfy uniform a priori estimates in parameter-dependent norms. We essentially use ideas from Newton's polygon method and of Vishik-Lyusternik boundary layer theory.</dcterms:abstract>
    <dc:contributor>Denk, Robert</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed