Guanidino acid hydrolysis by the human enzyme annotated as agmatinase
Guanidino acid hydrolysis by the human enzyme annotated as agmatinase
Date
2022
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
681777
Project
RiboDisc - Discovery of novel orphan riboswitch ligands
Open Access publication
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Scientific Reports ; 12 (2022). - 22088. - Springer Nature. - eISSN 2045-2322
Abstract
Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.
Summary in another language
Subject (DDC)
540 Chemistry
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SINN, Malte, Marco STANOPPI, Franziskus HAUTH, Jennifer S. FLEMING, Dietmar FUNCK, Olga MAYANS, Jörg S. HARTIG, 2022. Guanidino acid hydrolysis by the human enzyme annotated as agmatinase. In: Scientific Reports. Springer Nature. 12, 22088. eISSN 2045-2322. Available under: doi: 10.1038/s41598-022-26655-4BibTex
@article{Sinn2022Guani-66196, year={2022}, doi={10.1038/s41598-022-26655-4}, title={Guanidino acid hydrolysis by the human enzyme annotated as agmatinase}, volume={12}, journal={Scientific Reports}, author={Sinn, Malte and Stanoppi, Marco and Hauth, Franziskus and Fleming, Jennifer S. and Funck, Dietmar and Mayans, Olga and Hartig, Jörg S.}, note={Article Number: 22088} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66196"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66196"/> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-23T08:06:22Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:title>Guanidino acid hydrolysis by the human enzyme annotated as agmatinase</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66196/3/Sinn_2-1baz9vyhgcg6n1.pdf"/> <dc:contributor>Funck, Dietmar</dc:contributor> <dc:contributor>Hauth, Franziskus</dc:contributor> <dc:contributor>Fleming, Jennifer S.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Stanoppi, Marco</dc:creator> <dc:creator>Mayans, Olga</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66196/3/Sinn_2-1baz9vyhgcg6n1.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-23T08:06:22Z</dc:date> <dc:creator>Funck, Dietmar</dc:creator> <dc:creator>Hauth, Franziskus</dc:creator> <dc:language>eng</dc:language> <dc:creator>Hartig, Jörg S.</dc:creator> <dcterms:abstract xml:lang="eng">Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.</dcterms:abstract> <dc:creator>Sinn, Malte</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Fleming, Jennifer S.</dc:creator> <dc:contributor>Mayans, Olga</dc:contributor> <dc:contributor>Stanoppi, Marco</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Hartig, Jörg S.</dc:contributor> <dc:contributor>Sinn, Malte</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed
Yes