Ferrous iron oxidation by anoxygenic phototrophic bacteria

Lade...
Vorschaubild
Datum
1993
Autor:innen
Widdel, Friedrich
Schnell, Sylvia
Heising, Silke
Ehrenreich, Armin
Assmus, Bernhard
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Nature. 1993, 362(6423), pp. 834-836. ISSN 0028-0836. Available under: doi: 10.1038/362834a0
Zusammenfassung

Natural oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea 1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4 6 or a photobiological process involving two photosystems7 9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10 14. The reducing power of ferrous iron increases dramatically at pH values higher than 2 3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E 0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E' 0 = -0.236V) or Fe(OH)3 + HCO- 3FeCO3 (E' 0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WIDDEL, Friedrich, Sylvia SCHNELL, Silke HEISING, Armin EHRENREICH, Bernhard ASSMUS, Bernhard SCHINK, 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. In: Nature. 1993, 362(6423), pp. 834-836. ISSN 0028-0836. Available under: doi: 10.1038/362834a0
BibTex
@article{Widdel1993Ferro-6528,
  year={1993},
  doi={10.1038/362834a0},
  title={Ferrous iron oxidation by anoxygenic phototrophic bacteria},
  number={6423},
  volume={362},
  issn={0028-0836},
  journal={Nature},
  pages={834--836},
  author={Widdel, Friedrich and Schnell, Sylvia and Heising, Silke and Ehrenreich, Armin and Assmus, Bernhard and Schink, Bernhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6528">
    <dc:contributor>Schnell, Sylvia</dc:contributor>
    <dc:creator>Heising, Silke</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:27:10Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:27:10Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6528/1/Ferrous_iron_oxidation_by_anoxygenic_phototrophic_bacteria.pdf"/>
    <dc:contributor>Assmus, Bernhard</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6528/1/Ferrous_iron_oxidation_by_anoxygenic_phototrophic_bacteria.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Schink, Bernhard</dc:creator>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Ferrous iron oxidation by anoxygenic phototrophic bacteria</dcterms:title>
    <dc:creator>Ehrenreich, Armin</dc:creator>
    <dcterms:issued>1993</dcterms:issued>
    <dc:creator>Widdel, Friedrich</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Schnell, Sylvia</dc:creator>
    <dcterms:abstract xml:lang="eng">Natural oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea 1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4 6 or a photobiological process involving two photosystems7 9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10 14. The reducing power of ferrous iron increases dramatically at pH values higher than 2 3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E 0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E' 0 = -0.236V) or Fe(OH)3 + HCO- 3FeCO3 (E' 0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Widdel, Friedrich</dc:contributor>
    <dc:creator>Assmus, Bernhard</dc:creator>
    <dc:contributor>Ehrenreich, Armin</dc:contributor>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6528"/>
    <dcterms:bibliographicCitation>First publ. in: Nature 362 (1993), pp. 834-836</dcterms:bibliographicCitation>
    <dc:contributor>Heising, Silke</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet