Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data

Thumbnail Image
Date
2008
Authors
Giga, Yoshikazu
Inui, Katsuya
Mahalov, Alex
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 253
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
We establish a global existence result for the rotating Navier-Stokes equations with nondecaying initial data in a critical space which includes a large class of almost periodic functions. The scaling invariant function space we introduce is given as the divergence of the space of 3x3 fields of Fourier transformed finite Radon measures. The smallness condition on initial data for global existence is explicitly given in terms of the Reynolds number. The condition is independent of the size of the angular velocity of rotation.
Summary in another language
In einem kritischen Funktionenraum, der eine große Klasse fast-periodischer Funktionen enhält, wird die Existenz von globalen Lösungen nachgewiesen. Der skalierungsinvariante Funtionenraum ergibt sich als Divergenz der 3x3 Vektorfelder von Fouriertransformierten endlichen Radonmaßen. Die Kleinheitsbedingung an den Anfangswert für globale Existenz ist explizit durch die Reynoldszahl dargestellt. Diese Bedingung ist unabhängig von der Winkelgeschwindigkeit der Rotation.
Subject (DDC)
510 Mathematics
Keywords
Navier-Stokes-Gleichungen mit Rotation,globale Lösungen,rotating Navier-Stokes equations,global solvability
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690GIGA, Yoshikazu, Katsuya INUI, Alex MAHALOV, Jürgen SAAL, 2008. Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data
BibTex
@unpublished{Giga2008Unifo-647,
  year={2008},
  title={Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data},
  author={Giga, Yoshikazu and Inui, Katsuya and Mahalov, Alex and Saal, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/647">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">We establish a global existence result for the rotating Navier-Stokes equations with nondecaying initial data in a critical space which includes a large class of almost periodic functions. The scaling invariant function space we introduce is given as the divergence of the space of 3x3 fields of Fourier transformed finite Radon measures. The smallness condition on initial data for global existence is explicitly given in terms of the Reynolds number. The condition is independent of the size of the angular velocity of rotation.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:21Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/647/1/research_paper_253.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:21Z</dc:date>
    <dc:creator>Saal, Jürgen</dc:creator>
    <dcterms:issued>2008</dcterms:issued>
    <dc:creator>Giga, Yoshikazu</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/647/1/research_paper_253.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Inui, Katsuya</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Inui, Katsuya</dc:creator>
    <dc:contributor>Mahalov, Alex</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/647"/>
    <dc:language>eng</dc:language>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Giga, Yoshikazu</dc:contributor>
    <dcterms:title>Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data</dcterms:title>
    <dc:creator>Mahalov, Alex</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Saal, Jürgen</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed