KOPS - Das Institutionelle Repositorium der Universität Konstanz

Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data

Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:f44200582308629edb5d7bb9c14f7724

GIGA, Yoshikazu, Katsuya INUI, Alex MAHALOV, Jürgen SAAL, 2008. Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data

@unpublished{Giga2008Unifo-647, title={Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data}, year={2008}, author={Giga, Yoshikazu and Inui, Katsuya and Mahalov, Alex and Saal, Jürgen} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/647"> <dc:creator>Giga, Yoshikazu</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:21Z</dcterms:available> <dc:creator>Inui, Katsuya</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:contributor>Mahalov, Alex</dc:contributor> <dcterms:issued>2008</dcterms:issued> <dcterms:title>Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data</dcterms:title> <dc:format>application/pdf</dc:format> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:21Z</dc:date> <dc:creator>Saal, Jürgen</dc:creator> <dc:language>eng</dc:language> <dc:creator>Mahalov, Alex</dc:creator> <dc:contributor>Giga, Yoshikazu</dc:contributor> <dc:contributor>Inui, Katsuya</dc:contributor> <dcterms:abstract xml:lang="eng">We establish a global existence result for the rotating Navier-Stokes equations with nondecaying initial data in a critical space which includes a large class of almost periodic functions. The scaling invariant function space we introduce is given as the divergence of the space of 3x3 fields of Fourier transformed finite Radon measures. The smallness condition on initial data for global existence is explicitly given in terms of the Reynolds number. The condition is independent of the size of the angular velocity of rotation.</dcterms:abstract> <dc:rights>deposit-license</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/647"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

research_paper_253.pdf 63

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto