Analyzing Document Collections via Context-Aware Term Extraction

Cite This

Files in this item

Checksum: MD5:667062d475e1b09091be86f9b23bc262

KEIM, Daniel A., Daniela OELKE, Christian ROHRDANTZ, 2010. Analyzing Document Collections via Context-Aware Term Extraction. In: HORACEK, Helmut, ed., Elisabeth MÉTAIS, ed., Rafael MUÑOZ, ed., Magdalena WOLSKA, ed.. Natural Language Processing and Information Systems. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 154-168. ISBN 978-3-642-12549-2. Available under: doi: 10.1007/978-3-642-12550-8_13

@inproceedings{Keim2010Analy-6445, title={Analyzing Document Collections via Context-Aware Term Extraction}, year={2010}, doi={10.1007/978-3-642-12550-8_13}, number={5723}, isbn={978-3-642-12549-2}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Natural Language Processing and Information Systems}, pages={154--168}, editor={Horacek, Helmut and Métais, Elisabeth and Muñoz, Rafael and Wolska, Magdalena}, author={Keim, Daniel A. and Oelke, Daniela and Rohrdantz, Christian} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2011-05-31T22:25:04Z</dcterms:available> <bibo:uri rdf:resource=""/> <dc:format>application/pdf</dc:format> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>Analyzing Document Collections via Context-Aware Term Extraction</dcterms:title> <dc:contributor>Oelke, Daniela</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2010</dcterms:issued> <dspace:hasBitstream rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Also publ. in: Natural Language Processing and Information Systems : 14th International Conference on Applications of Natural Language to Information Systems, NLDB 2009, Saarbrücken, Germany, June 24-26. / ed. by Helmut Horacek ...(Eds.). - Berlin : Springer, 2010. - pp. 154-168. - ISBN 978-3-642-12550-8</dcterms:bibliographicCitation> <dcterms:rights rdf:resource=""/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Oelke, Daniela</dc:creator> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dc:date rdf:datatype="">2011-03-24T16:12:45Z</dc:date> <dcterms:hasPart rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In large collections of documents that are divided into predefined classes, the differences and similarities of those classes are of special interest. This paper presents an approach that is able to automatically extract terms from such document collections which describe what topics discriminate a single class from the others (discriminating terms) and which topics discriminate a subset of the classes against the remaining ones (overlap terms). The importance for real world applications and the effectiveness of our approach are demonstrated by two out of practice examples. In a first application our predefined classes correspond to different scientific conferences. By extracting terms from collections of papers published on these conferences, we determine automatically the topical differences and similarities of the conferences. In our second application task we extract terms out of a collection of product reviews which show what features reviewers commented on. We get these terms by discriminating the product review class against a suitable counter-balance class. Finally, our method is evaluated comparing it to alternative approaches.</dcterms:abstract> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Rohrdantz, Christian</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

12460.13pdf.pdf 392

This item appears in the following Collection(s)

Search KOPS


My Account