Intervals of Almost Totally Positive Matrices


Dateien zu dieser Ressource

Prüfsumme: MD5:a20faaf2e5ec1b7d2a6232d7937e4dbc

GARLOFF, Jürgen, 2001. Intervals of Almost Totally Positive Matrices

@unpublished{Garloff2001Inter-6437, title={Intervals of Almost Totally Positive Matrices}, year={2001}, author={Garloff, Jürgen} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2011-03-24T16:12:43Z</dc:date> <dspace:isPartOfCollection rdf:resource=""/> <bibo:uri rdf:resource=""/> <dcterms:title>Intervals of Almost Totally Positive Matrices</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:available rdf:datatype="">2011-03-24T16:12:43Z</dcterms:available> <dcterms:abstract xml:lang="eng">We consider the class of the totally nonnegative matrices, i.e., the matrices having all their minors nonnegative, and intervals of matrices with respect to the chequerboard partial ordering, which results from the usual entrywise partial ordering if we reverse the inequality sign in all components having odd index sum. For these intervals in 1982 we stated in this journal the following conjecture: If the left and right endpoints of an interval are nonsingular and totally nonnegative then all matrices taken from the interval are nonsingular and totally nonnegative. In this paper we show that this conjecture is true if we restrict ourselves to the subset of the almost totally positive matrices.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Garloff, Jürgen</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2001</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_146.pdf 46

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto