A Hilbert-Mumford-Criterion for SL2-Actions

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:4bb2a3c2141486d86c469d462539c875

HAUSEN, Jürgen, 2002. A Hilbert-Mumford-Criterion for SL2-Actions

@unpublished{Hausen2002Hilbe-6431, title={A Hilbert-Mumford-Criterion for SL2-Actions}, year={2002}, author={Hausen, Jürgen} }

A Hilbert-Mumford-Criterion for SL2-Actions Let the special linear group G := SL2 act regularly on a Q-factorial variety X. Consider a maximal torus T subset G and its normalizer N subset G. We prove: If U subset X is a maximal open N-invariant subset admitting a good quotient U -> U // N with a divisorial quotient space, then the intersection W(U) of all translates g U is open in X and admits a good quotient W(U) -> W(U) // G with a divisorial quotient space. Conversely, we obtain that every maximal open G-invariant subset W subset X admitting a good quotient W -> W // G with a divisorial quotient space is of the form W = W(U) for some maximal open N-invariant U as above. Hausen, Jürgen 2011-03-24T16:12:41Z deposit-license application/pdf Hausen, Jürgen 2002 2011-03-24T16:12:41Z eng

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_166.pdf 55

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto