Filter functions with exponential convergence order

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:6dfa177c827385b0399777e94039a6be

DENK, Robert, 1994. Filter functions with exponential convergence order. In: Mathematische Nachrichten. 169(1), pp. 107-115

@article{Denk1994Filte-643, title={Filter functions with exponential convergence order}, year={1994}, number={1}, volume={169}, journal={Mathematische Nachrichten}, pages={107--115}, author={Denk, Robert} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/643"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/643"/> <dc:creator>Denk, Robert</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 169 (1994), 1, pp. 107-115</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:20Z</dc:date> <dc:rights>deposit-license</dc:rights> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Oversampled functions can be evaluated using generalized sinc-series and filter functions connected with these series. First we consider a standard filter defined by terms of the exponential function . We show that the Fourier transform of this filter posseses exponential convergence order where in the exponent the square root of the independent variable appears. This improves an estimate given in a paper of F. Natterer. Moreover, we define a more general family of filter functions with exponential convergence order where now in the exponent the power of the independent variable is arbitrary close to 1.</dcterms:abstract> <dcterms:title>Filter functions with exponential convergence order</dcterms:title> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dcterms:issued>1994</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Filter_functions_with_exponential_convergence_order.pdf 67

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto