Filter functions with exponential convergence order


Dateien zu dieser Ressource

Prüfsumme: MD5:6dfa177c827385b0399777e94039a6be

DENK, Robert, 1994. Filter functions with exponential convergence order. In: Mathematische Nachrichten. 169(1), pp. 107-115

@article{Denk1994Filte-643, title={Filter functions with exponential convergence order}, year={1994}, number={1}, volume={169}, journal={Mathematische Nachrichten}, pages={107--115}, author={Denk, Robert} }

<rdf:RDF xmlns:rdf="" xmlns:bibo="" xmlns:dc="" xmlns:dcterms="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dc:creator>Denk, Robert</dc:creator> <dcterms:available rdf:datatype="">2011-03-22T17:45:20Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Mathematische Nachrichten 169 (1994), 1, pp. 107-115</dcterms:bibliographicCitation> <dc:date rdf:datatype="">2011-03-22T17:45:20Z</dc:date> <dc:rights>deposit-license</dc:rights> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Oversampled functions can be evaluated using generalized sinc-series and filter functions connected with these series. First we consider a standard filter defined by terms of the exponential function . We show that the Fourier transform of this filter posseses exponential convergence order where in the exponent the square root of the independent variable appears. This improves an estimate given in a paper of F. Natterer. Moreover, we define a more general family of filter functions with exponential convergence order where now in the exponent the power of the independent variable is arbitrary close to 1.</dcterms:abstract> <dcterms:title>Filter functions with exponential convergence order</dcterms:title> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:rights rdf:resource=""/> <dcterms:issued>1994</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Filter_functions_with_exponential_convergence_order.pdf 67

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Mein Benutzerkonto