Unique Tensor Factorization of Algebras

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:1c4f5ffedb88c4106a6ab3ed5425fa66

NÜSKEN, Michael, 1998. Unique Tensor Factorization of Algebras

@techreport{Nusken1998Uniqu-6356, series={Konstanzer Schriften in Mathematik und Informatik}, title={Unique Tensor Factorization of Algebras}, year={1998}, number={76}, author={Nüsken, Michael} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6356"> <dc:creator>Nüsken, Michael</dc:creator> <dc:contributor>Nüsken, Michael</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Tensor product decomposition of algebras is known to be non-unique in many cases. But, as will be shown here, an additively indecomposable, finite-dimensional C-algebra A has an essentially unique tensor factorization A=A1x...xAr into non-trivial, x-indecomposable factors Ai. Thus the semiring of isomorphism classes of finite-dimensional C-algebras is a polynomial semiring N[X]. Moreover, the field C of complex numbers can be replaced by an arbitrary field of characteristic zero if one restricts oneself to SCHURian algebras.</dcterms:abstract> <dcterms:title>Unique Tensor Factorization of Algebras</dcterms:title> <dcterms:issued>1998</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6356"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:10Z</dc:date> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_076.pdf 89

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto