Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots

Vorschaubild
Datum
2010
Autor:innen
Hao, Ming C.
Dayal, Umeshwar
Sharma, Ratnesh K.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Erschienen in
Visualization and Data Analysis 2010 / Park, Jinah; Hao, Ming C.; Wong, Pak C.; Chen, Chaomei (Hrsg.). - SPIE, 2010. - (SPIE Proceedings ; 7530). - 06
Zusammenfassung
The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Variable Binned,Scatter plots,Correlations,Clusters,Cause-Effect,Data Distribution
Konferenz
IS&T/SPIE Electronic Imaging, San Jose, California
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690HAO, Ming C., Umeshwar DAYAL, Ratnesh K. SHARMA, Daniel A. KEIM, Halldor JANETZKO, 2010. Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots. IS&T/SPIE Electronic Imaging. San Jose, California. In: PARK, Jinah, ed., Ming C. HAO, ed., Pak C. WONG, ed., Chaomei CHEN, ed.. Visualization and Data Analysis 2010. SPIE, 06. Available under: doi: 10.1117/12.840142
BibTex
@inproceedings{Hao2010-01-17Visua-6310,
  year={2010},
  doi={10.1117/12.840142},
  title={Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots},
  number={7530},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Visualization and Data Analysis 2010},
  editor={Park, Jinah and Hao, Ming C. and Wong, Pak C. and Chen, Chaomei},
  author={Hao, Ming C. and Dayal, Umeshwar and Sharma, Ratnesh K. and Keim, Daniel A. and Janetzko, Halldor},
  note={Article Number: 06}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6310">
    <dcterms:abstract xml:lang="eng">The scatter plot is a well-known method of visualizing pairs of two-dimensional continuous variables. Multidimensional data can be depicted in a scatter plot matrix. They are intuitive and easy-to-use, but often have a high degree of overlap which may occlude a significant portion of data. In this paper, we propose variable binned scatter plots to allow the visualization of large amounts of data without overlapping. The basic idea is to use a non-uniform (variable) binning of the x and y dimensions and plots all the data points that fall within each bin into corresponding squares. Further, we map a third attribute to color for visualizing clusters. Analysts are able to interact with individual data points for record level information. We have applied these techniques to solve real-world problems on credit card fraud and data center energy consumption to visualize their data distribution and cause-effect among multiple attributes. A comparison of our methods with two recent well-known variants of scatter plots is included.</dcterms:abstract>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dcterms:available>
    <dcterms:title>Visual Analytics of Large Multi-Dimensional Data Using Variable Binned Scatter Plots</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dc:contributor>Sharma, Ratnesh K.</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6310"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:22Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6310/1/12456.pdf"/>
    <dcterms:bibliographicCitation>Also publ. in: Visualization and data analysis 2010 : 18 - 19 January 2010, San Jose, California, United States ; proceedings IS&amp;T/SPIE electronic imaging, science and technology / Jinah Park ... (Ed.). - Bellingham, Wash. : SPIE [u.a.], 2010. - Artikel 06. - ISBN 978-0-8194-7923-5</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Sharma, Ratnesh K.</dc:creator>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2010-01-17</dcterms:issued>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet