KOPS - Das Institutionelle Repositorium der Universität Konstanz

Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:e1dc73b2a8f5b5244740c47c5946c1f9

GALIANO, Gonzalo, María L. GARZÓN, Ansgar JÜNGEL, 2000. Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model

@unpublished{Galiano2000Semi--6298, title={Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model}, year={2000}, author={Galiano, Gonzalo and Garzón, María L. and Jüngel, Ansgar} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6298"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dcterms:available> <dc:contributor>Garzón, María L.</dc:contributor> <dc:creator>Jüngel, Ansgar</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:creator>Garzón, María L.</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Galiano, Gonzalo</dc:contributor> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dc:creator>Galiano, Gonzalo</dc:creator> <dcterms:abstract xml:lang="eng">A positivity-preserving numerical scheme for a strongly coupled cross-diffusion model for two competing species is presented, based on a semi-discretization in time. The variables are the population densities of the species. Existence of strictly positive weak solutions to the semidiscrete problem is proved. Moreover, it is shown that the semidiscrete solutions converge to a non-negative solution of the continuous system in one space dimension. The proofs are based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6298"/> <dcterms:issued>2000</dcterms:issued> <dcterms:title>Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model</dcterms:title> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:14Z</dc:date> <dc:rights>deposit-license</dc:rights> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_135.pdf 91

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto