PURPLE : Predictive Active Queue Management Utilizing Congestion Information
PURPLE : Predictive Active Queue Management Utilizing Congestion Information
Date
2003
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published in
28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.. - IEEE, 2003. - pp. 21-30. - ISBN 0-7695-2037-5
Abstract
Active Queue Management (AQM) is an attempt to find a delicate balance between two antagonistic Internet queuing requirements: First, buffer space should be maximized to accommodate the possibly huge transient bursts; second, buffer occupation should be minimum so as not to introduce unnecessary end-to-end delays. Traditional AQM mechanisms have been built on heuristics to achieve this balance, and have mostly done so quite well, but often require manual tuning or have resulted in slow convergence. In contrast, the PURPLE approach predicts the impact of its own actions on the behavior of reactive protocols and thus on the short-term future traffic without keeping per-flow state. PURPLE allows much faster convergence of the main AQM parameters, at least towards a local optimum, thereby smoothing and minimizing both congestion feedback and queue occupancy. To improve the quality of the prediction, we also passively monitor (using lightweight operations) information pertaining to the amount of congestion elsewhere in the network, for example, as seen by flows traversing this router.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03., Bonn/Konigswinter, Germany
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PLETKA, Roman, Marcel WALDVOGEL, Soenke MANNAL, 2003. PURPLE : Predictive Active Queue Management Utilizing Congestion Information. 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03.. Bonn/Konigswinter, Germany. In: 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.. IEEE, pp. 21-30. ISBN 0-7695-2037-5. Available under: doi: 10.1109/LCN.2003.1243109BibTex
@inproceedings{Pletka2003PURPL-6293, year={2003}, doi={10.1109/LCN.2003.1243109}, title={PURPLE : Predictive Active Queue Management Utilizing Congestion Information}, isbn={0-7695-2037-5}, publisher={IEEE}, booktitle={28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings.}, pages={21--30}, author={Pletka, Roman and Waldvogel, Marcel and Mannal, Soenke} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6293"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6293/1/purple_predictive_active_queue_management.pdf"/> <dc:creator>Waldvogel, Marcel</dc:creator> <dc:creator>Mannal, Soenke</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Active Queue Management (AQM) is an attempt to find a delicate balance between two antagonistic Internet queuing requirements: First, buffer space should be maximized to accommodate the possibly huge transient bursts; second, buffer occupation should be minimum so as not to introduce unnecessary end-to-end delays. Traditional AQM mechanisms have been built on heuristics to achieve this balance, and have mostly done so quite well, but often require manual tuning or have resulted in slow convergence. In contrast, the PURPLE approach predicts the impact of its own actions on the behavior of reactive protocols and thus on the short-term future traffic without keeping per-flow state. PURPLE allows much faster convergence of the main AQM parameters, at least towards a local optimum, thereby smoothing and minimizing both congestion feedback and queue occupancy. To improve the quality of the prediction, we also passively monitor (using lightweight operations) information pertaining to the amount of congestion elsewhere in the network, for example, as seen by flows traversing this router.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6293"/> <dc:contributor>Mannal, Soenke</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Pletka, Roman</dc:creator> <dcterms:bibliographicCitation>First publ. as: Conference Paper IEEE LCN, Bonn, Oktober 2003</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6293/1/purple_predictive_active_queue_management.pdf"/> <dc:contributor>Waldvogel, Marcel</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:12Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2003</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:11:12Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Pletka, Roman</dc:contributor> <dcterms:title>PURPLE : Predictive Active Queue Management Utilizing Congestion Information</dcterms:title> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No