Spectral-Driven Isometry-Invariant Matching of 3D Shapes


Dateien zu dieser Ressource

Prüfsumme: MD5:977dff3891c0a66b53b08ff18b8cb7e2

RUGGERI, Mauro Roberto, Giuseppe PATANÈ, Michela SPAGNUOLO, Dietmar SAUPE, 2010. Spectral-Driven Isometry-Invariant Matching of 3D Shapes. In: International Journal of Computer Vision. 89(2/3), pp. 248-265. ISSN 0920-5691. eISSN 1573-1405

@article{Ruggeri2010Spect-6273, title={Spectral-Driven Isometry-Invariant Matching of 3D Shapes}, year={2010}, doi={10.1007/s11263-009-0250-0}, number={2/3}, volume={89}, issn={0920-5691}, journal={International Journal of Computer Vision}, pages={248--265}, author={Ruggeri, Mauro Roberto and Patanè, Giuseppe and Spagnuolo, Michela and Saupe, Dietmar} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6273"> <dcterms:issued>2010</dcterms:issued> <dc:rights>deposit-license</dc:rights> <dc:contributor>Ruggeri, Mauro Roberto</dc:contributor> <dcterms:abstract xml:lang="eng">This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once aset of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.</dcterms:abstract> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Spagnuolo, Michela</dc:contributor> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Spagnuolo, Michela</dc:creator> <dcterms:title>Spectral-Driven Isometry-Invariant Matching of 3D Shapes</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-31T22:25:04Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>International Journal of Computer Vision ; 89 (2010), 2/3. - S. 248-265</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:40Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6273"/> <dc:format>application/pdf</dc:format> <dc:creator>Patanè, Giuseppe</dc:creator> <dc:contributor>Patanè, Giuseppe</dc:contributor> <dc:creator>Ruggeri, Mauro Roberto</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Spectral_Ruggeri.pdf 187

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto