Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-110214 |
Author: | Ruggeri, Mauro Roberto; Patanè, Giuseppe; Spagnuolo, Michela; Saupe, Dietmar |
Year of publication: | 2010 |
Published in: | International Journal of Computer Vision ; 89 (2010), 2/3. - pp. 248-265. - ISSN 0920-5691. - eISSN 1573-1405 |
DOI (citable link): | https://dx.doi.org/10.1007/s11263-009-0250-0 |
Summary: |
This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once aset of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Isometry-invariant matching, 3D model retrieval, Feature points, Local statistical shape descriptors, Laplace-Beltrami operator |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
RUGGERI, Mauro Roberto, Giuseppe PATANÈ, Michela SPAGNUOLO, Dietmar SAUPE, 2010. Spectral-Driven Isometry-Invariant Matching of 3D Shapes. In: International Journal of Computer Vision. 89(2/3), pp. 248-265. ISSN 0920-5691. eISSN 1573-1405. Available under: doi: 10.1007/s11263-009-0250-0
@article{Ruggeri2010Spect-6273, title={Spectral-Driven Isometry-Invariant Matching of 3D Shapes}, year={2010}, doi={10.1007/s11263-009-0250-0}, number={2/3}, volume={89}, issn={0920-5691}, journal={International Journal of Computer Vision}, pages={248--265}, author={Ruggeri, Mauro Roberto and Patanè, Giuseppe and Spagnuolo, Michela and Saupe, Dietmar} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6273"> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Ruggeri, Mauro Roberto</dc:contributor> <dcterms:abstract xml:lang="eng">This paper presents a matching method for 3D shapes, which comprises a new technique for surface sampling and two algorithms for matching 3D shapes based on point-based statistical shape descriptors. Our sampling technique is based on critical points of the eigenfunctions related to the smaller eigenvalues of the Laplace-Beltrami operator. These critical points are invariant to isometries and are used as anchor points of a sampling technique, which extends the farthest point sampling by using statistical criteria for controlling the density and number of reference points. Once aset of reference points has been computed, for each of them we construct a point-based statistical descriptor (PSSD, for short) of the input surface. This descriptor incorporates an approximation of the geodesic shape distribution and other geometric information describing the surface at that point. Then, the dissimilarity between two surfaces is computed by comparing the corresponding sets of PSSDs with bipartite graph matching or measuring the L1-distance between the reordered feature vectors of a proximity graph. Here, the reordering is given by the Fiedler vector of a Laplacian matrix associated to the proximity graph. Our tests have shown that both approaches are suitable for online retrieval of deformed objects and our sampling strategy improves the retrieval performances of isometry-invariant matching methods. Finally, the approach based on the Fiedler vector is faster than using the bipartite graph matching and it has a similar retrieval effectiveness.</dcterms:abstract> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Spagnuolo, Michela</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Spagnuolo, Michela</dc:creator> <dcterms:title>Spectral-Driven Isometry-Invariant Matching of 3D Shapes</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-05-31T22:25:04Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:40Z</dc:date> <dcterms:bibliographicCitation>International Journal of Computer Vision ; 89 (2010), 2/3. - S. 248-265</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6273"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <dc:creator>Patanè, Giuseppe</dc:creator> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6273/1/Spectral_Ruggeri.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Ruggeri, Mauro Roberto</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6273/1/Spectral_Ruggeri.pdf"/> <dc:contributor>Patanè, Giuseppe</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Spectral_Ruggeri.pdf | 760 |