Rate of Stability in Hyperbolic Thermoelasticity

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:4426b79a10fded5499b4b308e9adc4e2

IRMSCHER, Tilman, 2006. Rate of Stability in Hyperbolic Thermoelasticity

@unpublished{Irmscher2006Stabi-6189, title={Rate of Stability in Hyperbolic Thermoelasticity}, year={2006}, author={Irmscher, Tilman} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6189"> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dc:date> <dcterms:issued>2006</dcterms:issued> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dcterms:title>Rate of Stability in Hyperbolic Thermoelasticity</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.</dcterms:abstract> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> <dc:contributor>Irmscher, Tilman</dc:contributor> <dc:creator>Irmscher, Tilman</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6189"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_214.pdf 84

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto