Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Preprint |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-22342 |
Author: | Irmscher, Tilman |
Year of publication: | 2006 |
Series: | Konstanzer Schriften in Mathematik und Informatik ; 214 |
Summary: |
In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.
|
Subject (DDC): | 004 Computer Science |
Link to License: | In Copyright |
IRMSCHER, Tilman, 2006. Rate of Stability in Hyperbolic Thermoelasticity
@unpublished{Irmscher2006Stabi-6189, title={Rate of Stability in Hyperbolic Thermoelasticity}, year={2006}, author={Irmscher, Tilman} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6189"> <dc:rights>terms-of-use</dc:rights> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dc:date> <dcterms:issued>2006</dcterms:issued> <dcterms:title>Rate of Stability in Hyperbolic Thermoelasticity</dcterms:title> <dcterms:abstract xml:lang="eng">In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/> <dc:contributor>Irmscher, Tilman</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dcterms:available> <dc:creator>Irmscher, Tilman</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6189"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
preprint_214.pdf | 241 |