Rate of Stability in Hyperbolic Thermoelasticity

Thumbnail Image
Date
2006
Authors
Irmscher, Tilman
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 214
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690IRMSCHER, Tilman, 2006. Rate of Stability in Hyperbolic Thermoelasticity
BibTex
@unpublished{Irmscher2006Stabi-6189,
  year={2006},
  title={Rate of Stability in Hyperbolic Thermoelasticity},
  author={Irmscher, Tilman}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6189">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6189"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Rate of Stability in Hyperbolic Thermoelasticity</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Irmscher, Tilman</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:04Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6189/1/preprint_214.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2006</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this paper we consider the system of hyperbolic thermoelasticity in one dimension with Dirichlet-Neumann boundary conditions. First, the roots of the characteristic polynomial are investigated analytically applying appropriate scalings. Then we prove the exponential decay of the associated energy and describe the optimal rate of stability. Finally, we turn to the system of classical thermoelasticity. There we use the same energy as for the previous system to derive an analogous result.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Irmscher, Tilman</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed