Geometric invariant theory based on Weil divisors

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:3774ca8244c7e7597e63182528c43c17

HAUSEN, Jürgen, 2003. Geometric invariant theory based on Weil divisors

@unpublished{Hausen2003Geome-6154, title={Geometric invariant theory based on Weil divisors}, year={2003}, author={Hausen, Jürgen} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6154"> <dcterms:abstract xml:lang="deu">Given an action of a reductive group on a normal variety, we construct all invariant open subsets admitting a good quotient with a quasiprojective or a divisorial quotient space. Our approach extends known constructions like Mumford s Geometric Invariant Theory. We obtain several new Hilbert-Mumford type theorems, and we extend a projectivity criterion of Bialynicki-Birula and Swiecicka for varieties with semisimple group action from the smooth to the singular case.</dcterms:abstract> <dc:language>deu</dc:language> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:contributor>Hausen, Jürgen</dc:contributor> <dcterms:title>Geometric invariant theory based on Weil divisors</dcterms:title> <dc:creator>Hausen, Jürgen</dc:creator> <dc:format>application/pdf</dc:format> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:50Z</dc:date> <dcterms:issued>2003</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:50Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6154"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_184.pdf 83

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto