Convergence of Arbitrage-Free Discrete Time Markovian Market Models


Dateien zu dieser Ressource

Prüfsumme: MD5:75e802d3a259dbffa29f861202e40c36

LEITNER, Johannes, 2000. Convergence of Arbitrage-Free Discrete Time Markovian Market Models

@techreport{Leitner2000Conve-615, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Convergence of Arbitrage-Free Discrete Time Markovian Market Models}, year={2000}, number={2000/07}, author={Leitner, Johannes} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:issued>2000</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Convergence of Arbitrage-Free Discrete Time Markovian Market Models</dcterms:title> <dc:contributor>Leitner, Johannes</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:date rdf:datatype="">2011-03-22T17:45:14Z</dc:date> <dcterms:hasPart rdf:resource=""/> <dcterms:available rdf:datatype="">2011-03-22T17:45:14Z</dcterms:available> <dcterms:abstract xml:lang="eng">We consider two sequences of Markov chains inducing equivalent measures on the discrete path space. We establish conditions under which these two measures converge weakly to measures induced on the Wiener space by weak solutions of two SEDs, which are unique in the sense of probability law. We are going to look at the relation between these two limits and at the convergence and limits of a wide class of bounded functionals of the Markov chains. The limit measures turn out not to be equivalent in general. The results are applied to a sequence of discrete time market models given by an objective probability measure, describing the stochastic dynamics of the state of the market, and an equivalent martingale measure determining prices of contigent claims. The relation between equivalent martingale measure, state prices, market price of risk and the term structure of interest rates is examined. The results lead to a modification of the Black-Scholes formula and an explanation for the surprising fact that continuous-time arbitrage-free markets are complete under weak technical conditions.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dc:creator>Leitner, Johannes</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource=""/> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

427_1.pdf 94

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto