Homogeneous coordinates for algebraic varieties : Revised Version

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:6d0d52066c6fef0521ade46d8bbdc96c

BERCHTOLD, Florian, Jürgen HAUSEN, 2002. Homogeneous coordinates for algebraic varieties : Revised Version

@unpublished{Berchtold2002Homog-6147, title={Homogeneous coordinates for algebraic varieties : Revised Version}, year={2002}, author={Berchtold, Florian and Hausen, Jürgen} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6147"> <dcterms:title>Homogeneous coordinates for algebraic varieties : Revised Version</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6147/1/preprint_161_02.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:48Z</dc:date> <dc:creator>Berchtold, Florian</dc:creator> <dc:contributor>Hausen, Jürgen</dc:contributor> <dc:rights>deposit-license</dc:rights> <dcterms:abstract xml:lang="eng">We associate to every divisorial (e.g. smooth) variety X with only constant invertible global functions and finitely generated Picard group a Pic(X)-graded homogeneous coordinate ring. This generalizes the usual homogeneous coordinate ring of the projective space and constructions of Cox and Kajiwara for smooth and divisorial toric varieties. We show that the homogeneous coordinate ring defines in fact a fully faithful functor. For normal complex varieties X with only constant global functions, we even obtain an equivalence of categories. Finally, the homogeneous coordinate ring of a locally factorial complete irreducible variety with free finitely generated Picard group turns out to be a Krull ring admitting unique factorization.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6147/1/preprint_161_02.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:48Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6147"/> <dc:contributor>Berchtold, Florian</dc:contributor> <dcterms:issued>2002</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Hausen, Jürgen</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

preprint_161_02.pdf 87

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto