Homogeneous coordinates for algebraic varieties : Revised Version
Homogeneous coordinates for algebraic varieties : Revised Version
Date
2002
Authors
Hausen, Jürgen
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 161
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
We associate to every divisorial (e.g. smooth) variety X with only constant invertible global functions and finitely generated Picard group a Pic(X)-graded homogeneous coordinate ring. This generalizes the usual homogeneous coordinate ring of the projective space and constructions of Cox and Kajiwara for smooth and divisorial toric varieties. We show that the homogeneous coordinate ring defines in fact a fully faithful functor. For normal complex varieties X with only constant global functions, we even obtain an equivalence of categories. Finally, the homogeneous coordinate ring of a locally factorial complete irreducible variety with free finitely generated Picard group turns out to be a Krull ring admitting unique factorization.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BERCHTOLD, Florian, Jürgen HAUSEN, 2002. Homogeneous coordinates for algebraic varieties : Revised VersionBibTex
@unpublished{Berchtold2002Homog-6147, year={2002}, title={Homogeneous coordinates for algebraic varieties : Revised Version}, author={Berchtold, Florian and Hausen, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6147"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:48Z</dc:date> <dc:creator>Hausen, Jürgen</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6147"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6147/1/preprint_161_02.pdf"/> <dc:creator>Berchtold, Florian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Hausen, Jürgen</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We associate to every divisorial (e.g. smooth) variety X with only constant invertible global functions and finitely generated Picard group a Pic(X)-graded homogeneous coordinate ring. This generalizes the usual homogeneous coordinate ring of the projective space and constructions of Cox and Kajiwara for smooth and divisorial toric varieties. We show that the homogeneous coordinate ring defines in fact a fully faithful functor. For normal complex varieties X with only constant global functions, we even obtain an equivalence of categories. Finally, the homogeneous coordinate ring of a locally factorial complete irreducible variety with free finitely generated Picard group turns out to be a Krull ring admitting unique factorization.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6147/1/preprint_161_02.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:48Z</dcterms:available> <dc:contributor>Berchtold, Florian</dc:contributor> <dcterms:issued>2002</dcterms:issued> <dc:format>application/pdf</dc:format> <dcterms:title>Homogeneous coordinates for algebraic varieties : Revised Version</dcterms:title> </rdf:Description> </rdf:RDF>