Domain walls and chaos in the disordered SOS model

Cite This

Files in this item

Checksum: MD5:4f8cb97f257240c7f90e23107d2660c6

SCHWARZ, Karsten, Andreas KARRENBAUER, Grégory SCHEHR, Heiko RIEGER, 2009. Domain walls and chaos in the disordered SOS model. In: Journal of Statistical Mechanics: Theory and Experiment. 2009(08), P08022. ISSN 1742-5468. Available under: doi: 10.1088/1742-5468/2009/08/P08022

@article{Schwarz2009Domai-6066, title={Domain walls and chaos in the disordered SOS model}, year={2009}, doi={10.1088/1742-5468/2009/08/P08022}, number={08}, volume={2009}, issn={1742-5468}, journal={Journal of Statistical Mechanics: Theory and Experiment}, author={Schwarz, Karsten and Karrenbauer, Andreas and Schehr, Grégory and Rieger, Heiko}, note={Also publ. in: arXiv:0905.4816v1 [cond-mat.dis-nn] Article Number: P08022} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:rights rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Schehr, Grégory</dc:creator> <dc:contributor>Rieger, Heiko</dc:contributor> <dc:contributor>Schwarz, Karsten</dc:contributor> <dc:creator>Karrenbauer, Andreas</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dcterms:abstract xml:lang="eng">Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm s left passage formula with κ = 4 whereas their fractal dimension is ds = 1.25, and therefore their behavior cannot be described as showing Schramm (or stochastic) Loewner evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L → ∞ such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order δ in the disorder is subtle: beyond a crossover length scale Lδ ∼ δ−1 the correlations of the perturbed ground state with the unperturbed ground state, rescaled using the roughness, are suppressed and approach zero logarithmically.</dcterms:abstract> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>First publ. in: Journal of statistical mechanics ; (2009). - P08022</dcterms:bibliographicCitation> <dc:creator>Rieger, Heiko</dc:creator> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Karrenbauer, Andreas</dc:contributor> <dcterms:available rdf:datatype="">2011-03-24T16:09:08Z</dcterms:available> <dc:creator>Schwarz, Karsten</dc:creator> <dc:contributor>Schehr, Grégory</dc:contributor> <dc:date rdf:datatype="">2011-03-24T16:09:08Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dcterms:title>Domain walls and chaos in the disordered SOS model</dcterms:title> <bibo:uri rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

0905.4816v1.pdf 109

This item appears in the following Collection(s)

Search KOPS


My Account