Weakly smooth nonselfadjoint spectral elliptic boundary problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The paper is devoted to general elliptic boundary problems (A, B1 , ..., Bm) with a differential operator A of order 2m and general boundary conditions, acting in a bounded domain G of the n-dimensional space. No self-adjointness is assumed. The main goal is to minimize, to some extent, the smoothness assumptions under which the known spectral results are true. The main results concern the asymptotics of the trace of the q-th power of the resolvent, where q>n/2m, in an angle of ellipticity with parameter. For example, for the Dirichlet problem these asymptotics are obtained in the case of bounded and measurable coefficients in A and continuous coefficients in the principal part of A, while the boundary is assumed to belong to the Hölder space C2m-1,1. The asymptotics of the moduli of the eigenvalues are investigated. The last section is devoted to indefinite spectral problems, with a real-valued multiplier changing the sign in front of the spectral parameter.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AGRANOVIČ, Michail S., Robert DENK, Melvin FAIERMAN, 1997. Weakly smooth nonselfadjoint spectral elliptic boundary problems. In: Mathematical topics. 1997, 14, pp. 138-199BibTex
@article{Agranovic1997Weakl-606, year={1997}, title={Weakly smooth nonselfadjoint spectral elliptic boundary problems}, volume={14}, journal={Mathematical topics}, pages={138--199}, author={Agranovič, Michail S. and Denk, Robert and Faierman, Melvin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/606"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/606/1/rd10.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dc:date> <dc:format>application/pdf</dc:format> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:12Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Mathematical topics 14 (1997), pp. 138-199</dcterms:bibliographicCitation> <dc:creator>Denk, Robert</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/606/1/rd10.pdf"/> <dc:creator>Agranovič, Michail S.</dc:creator> <dc:creator>Faierman, Melvin</dc:creator> <dc:contributor>Agranovič, Michail S.</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/606"/> <dcterms:issued>1997</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Faierman, Melvin</dc:contributor> <dcterms:abstract xml:lang="eng">The paper is devoted to general elliptic boundary problems (A, B1 , ..., Bm) with a differential operator A of order 2m and general boundary conditions, acting in a bounded domain G of the n-dimensional space. No self-adjointness is assumed. The main goal is to minimize, to some extent, the smoothness assumptions under which the known spectral results are true. The main results concern the asymptotics of the trace of the q-th power of the resolvent, where q>n/2m, in an angle of ellipticity with parameter. For example, for the Dirichlet problem these asymptotics are obtained in the case of bounded and measurable coefficients in A and continuous coefficients in the principal part of A, while the boundary is assumed to belong to the Hölder space C2m-1,1. The asymptotics of the moduli of the eigenvalues are investigated. The last section is devoted to indefinite spectral problems, with a real-valued multiplier changing the sign in front of the spectral parameter.</dcterms:abstract> <dcterms:title>Weakly smooth nonselfadjoint spectral elliptic boundary problems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>