On Quasiprojective Open Subsets of G-Varieties
On Quasiprojective Open Subsets of G-Varieties
Date
2002
Authors
Hausen, Jürgen
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik und Informatik; 175
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
Let X be a normal algebraic variety endowed with a regular action of a connected linear algebraic group G. We provide a simple proof for the fact that the union GU of all translates of a given quasiprojective open subset U subset X is again quasiprojective.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HAUSEN, Jürgen, 2002. On Quasiprojective Open Subsets of G-VarietiesBibTex
@unpublished{Hausen2002Quasi-6029, year={2002}, title={On Quasiprojective Open Subsets of G-Varieties}, author={Hausen, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6029"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6029"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:51Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6029/1/preprint_175.pdf"/> <dcterms:title>On Quasiprojective Open Subsets of G-Varieties</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Let X be a normal algebraic variety endowed with a regular action of a connected linear algebraic group G. We provide a simple proof for the fact that the union GU of all translates of a given quasiprojective open subset U subset X is again quasiprojective.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2002</dcterms:issued> <dc:creator>Hausen, Jürgen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:51Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6029/1/preprint_175.pdf"/> <dc:contributor>Hausen, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>