Social signals and algorithmic trading of Bitcoin

Lade...
Vorschaubild
Dateien
Garcia_2-t1fkt8mv1a5r2.pdf
Garcia_2-t1fkt8mv1a5r2.pdfGröße: 474.61 KBDownloads: 25
Datum
2015
Autor:innen
Schweitzer, Frank
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Royal Society Open Science. Royal Society of London. 2015, 2(9), 150288. eISSN 2054-5703. Available under: doi: 10.1098/rsos.150288
Zusammenfassung

The availability of data on digital traces is growing to unprecedented sizes, but inferring actionable knowledge from large-scale data is far from being trivial. This is especially important for computational finance, where digital traces of human behavior offer a great potential to drive trading strategies. We contribute to this by providing a consistent approach that integrates various datasources in the design of algorithmic traders. This allows us to derive insights into the principles behind the profitability of our trading strategies. We illustrate our approach through the analysis of Bitcoin, a cryptocurrency known for its large price fluctuations. In our analysis, we include economic signals of volume and price of exchange for USD, adoption of the Bitcoin technology, and transaction volume of Bitcoin. We add social signals related to information search, word of mouth volume, emotional valence, and opinion polarization as expressed in tweets related to Bitcoin for more than 3 years. Our analysis reveals that increases in opinion polarization and exchange volume precede rising Bitcoin prices, and that emotional valence precedes opinion polarization and rising exchange volumes. We apply these insights to design algorithmic trading strategies for Bitcoin, reaching very high profits in less than a year. We verify this high profitability with robust statistical methods that take into account risk and trading costs, confirming the long-standing hypothesis that trading based social media sentiment has the potential to yield positive returns on investment.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690GARCIA, David, Frank SCHWEITZER, 2015. Social signals and algorithmic trading of Bitcoin. In: Royal Society Open Science. Royal Society of London. 2015, 2(9), 150288. eISSN 2054-5703. Available under: doi: 10.1098/rsos.150288
BibTex
@article{Garcia2015Socia-59905,
  year={2015},
  doi={10.1098/rsos.150288},
  title={Social signals and algorithmic trading of Bitcoin},
  number={9},
  volume={2},
  journal={Royal Society Open Science},
  author={Garcia, David and Schweitzer, Frank},
  note={Article Number: 150288}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59905">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59905/1/Garcia_2-t1fkt8mv1a5r2.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T09:23:53Z</dc:date>
    <dc:contributor>Garcia, David</dc:contributor>
    <dc:creator>Garcia, David</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59905"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Schweitzer, Frank</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59905/1/Garcia_2-t1fkt8mv1a5r2.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-24T09:23:53Z</dcterms:available>
    <dcterms:title>Social signals and algorithmic trading of Bitcoin</dcterms:title>
    <dcterms:abstract xml:lang="eng">The availability of data on digital traces is growing to unprecedented sizes, but inferring actionable knowledge from large-scale data is far from being trivial. This is especially important for computational finance, where digital traces of human behavior offer a great potential to drive trading strategies. We contribute to this by providing a consistent approach that integrates various datasources in the design of algorithmic traders. This allows us to derive insights into the principles behind the profitability of our trading strategies. We illustrate our approach through the analysis of Bitcoin, a cryptocurrency known for its large price fluctuations. In our analysis, we include economic signals of volume and price of exchange for USD, adoption of the Bitcoin technology, and transaction volume of Bitcoin. We add social signals related to information search, word of mouth volume, emotional valence, and opinion polarization as expressed in tweets related to Bitcoin for more than 3 years. Our analysis reveals that increases in opinion polarization and exchange volume precede rising Bitcoin prices, and that emotional valence precedes opinion polarization and rising exchange volumes. We apply these insights to design algorithmic trading strategies for Bitcoin, reaching very high profits in less than a year. We verify this high profitability with robust statistical methods that take into account risk and trading costs, confirming the long-standing hypothesis that trading based social media sentiment has the potential to yield positive returns on investment.</dcterms:abstract>
    <dc:contributor>Schweitzer, Frank</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen