The individual dynamics of affective expression on social media
The individual dynamics of affective expression on social media
Date
2020
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
EPJ Data Science ; 9 (2020). - 1. - SpringerOpen. - eISSN 2193-1127
Abstract
Understanding the temporal dynamics of affect is crucial for our understanding human emotions in general. In this study, we empirically test a computational model of affective dynamics by analyzing a large-scale dataset of Facebook status updates using text analysis techniques. Our analyses support the central assumptions of our model: After stimulation, affective states, quantified as valence and arousal, exponentially return to an individual-specific baseline. On average, this baseline is at a slightly positive valence value and at a moderate arousal point below the midpoint. Furthermore, affective expression, in this case posting a status update on Facebook, immediately pushes arousal and valence towards the baseline by a proportional value. These results are robust to the choice of the text analysis technique and illustrate the fast timescale of affective dynamics through social media text. These outcomes are of high relevance for affective computing, the detection and modeling of collective emotions, the refinement of psychological research methodology, and the detection of abnormal, and potentially pathological, individual affect dynamics.
Summary in another language
Subject (DDC)
320 Politics
Keywords
Emotions; Social media; Computational modeling
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
PELLERT, Max, Simon SCHWEIGHOFER, David GARCIA, 2020. The individual dynamics of affective expression on social media. In: EPJ Data Science. SpringerOpen. 9, 1. eISSN 2193-1127. Available under: doi: 10.1140/epjds/s13688-019-0219-3BibTex
@article{Pellert2020indiv-59782, year={2020}, doi={10.1140/epjds/s13688-019-0219-3}, title={The individual dynamics of affective expression on social media}, volume={9}, journal={EPJ Data Science}, author={Pellert, Max and Schweighofer, Simon and Garcia, David}, note={Article Number: 1} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59782"> <dcterms:title>The individual dynamics of affective expression on social media</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:19:47Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:issued>2020</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:contributor>Garcia, David</dc:contributor> <dc:contributor>Pellert, Max</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59782/1/Pellert_2-1qf6ou3m3nygk5.pdf"/> <dc:creator>Garcia, David</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Schweighofer, Simon</dc:creator> <dc:creator>Pellert, Max</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T12:19:47Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Understanding the temporal dynamics of affect is crucial for our understanding human emotions in general. In this study, we empirically test a computational model of affective dynamics by analyzing a large-scale dataset of Facebook status updates using text analysis techniques. Our analyses support the central assumptions of our model: After stimulation, affective states, quantified as valence and arousal, exponentially return to an individual-specific baseline. On average, this baseline is at a slightly positive valence value and at a moderate arousal point below the midpoint. Furthermore, affective expression, in this case posting a status update on Facebook, immediately pushes arousal and valence towards the baseline by a proportional value. These results are robust to the choice of the text analysis technique and illustrate the fast timescale of affective dynamics through social media text. These outcomes are of high relevance for affective computing, the detection and modeling of collective emotions, the refinement of psychological research methodology, and the detection of abnormal, and potentially pathological, individual affect dynamics.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59782/1/Pellert_2-1qf6ou3m3nygk5.pdf"/> <dc:contributor>Schweighofer, Simon</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59782"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes