PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System
PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System
No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Authors
Buss, Eduard
Rabbel, Tim-Lucas
Horvat, Viktor
Krizmancic, Marko
Bogdan, Stjepan
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good. - New York, NY : ACM, 2022. - pp. 258-264. - ISBN 978-1-4503-9284-6
Abstract
Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
GoodIT '22 : 2022 ACM Conference on Information Technology for Social Good, Sep 7, 2022 - Sep 9, 2022, Limassol, Cyprus
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BUSS, Eduard, Tim-Lucas RABBEL, Viktor HORVAT, Marko KRIZMANCIC, Stjepan BOGDAN, Mostafa WAHBY, Heiko HAMANN, 2022. PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System. GoodIT '22 : 2022 ACM Conference on Information Technology for Social Good. Limassol, Cyprus, Sep 7, 2022 - Sep 9, 2022. In: GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good. New York, NY:ACM, pp. 258-264. ISBN 978-1-4503-9284-6. Available under: doi: 10.1145/3524458.3547266BibTex
@inproceedings{Buss2022Phyto-59708, year={2022}, doi={10.1145/3524458.3547266}, title={PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System}, isbn={978-1-4503-9284-6}, publisher={ACM}, address={New York, NY}, booktitle={GoodIT '22 : Proceedings of the 2022 ACM Conference on Information Technology for Social Good}, pages={258--264}, author={Buss, Eduard and Rabbel, Tim-Lucas and Horvat, Viktor and Krizmancic, Marko and Bogdan, Stjepan and Wahby, Mostafa and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59708"> <dc:contributor>Rabbel, Tim-Lucas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wahby, Mostafa</dc:creator> <dc:creator>Krizmancic, Marko</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rabbel, Tim-Lucas</dc:creator> <dc:creator>Bogdan, Stjepan</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Krizmancic, Marko</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Horvat, Viktor</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>PhytoNodes for Environmental Monitoring : Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System</dcterms:title> <dc:contributor>Buss, Eduard</dc:contributor> <dc:contributor>Bogdan, Stjepan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Hamann, Heiko</dc:creator> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dc:creator>Buss, Eduard</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59708"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T11:38:51Z</dc:date> <dcterms:abstract xml:lang="eng">Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.</dcterms:abstract> <dc:contributor>Wahby, Mostafa</dc:contributor> <dc:creator>Horvat, Viktor</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes