Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension
Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension
Date
2020
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Proceedings of the 24th Conference on Computational Natural Language Learning / Fernández, Raquel; Linzen, Tal (ed.). - Stroudsburg, PA : ACL, 2020. - pp. 12-25. - ISBN 978-1-952148-63-7
Abstract
While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.
Summary in another language
Subject (DDC)
400 Philology, Linguistics
Keywords
Conference
24th Conference on Computational Natural Language Learning (CoNLL) (online), Nov 19, 2020 - Nov 20, 2020
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SOOD, Ekta, Simon TANNERT, Diego FRASSINELLI, Andreas BULLING, Ngoc Thang VU, 2020. Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension. 24th Conference on Computational Natural Language Learning (CoNLL) (online), Nov 19, 2020 - Nov 20, 2020. In: FERNÁNDEZ, Raquel, ed., Tal LINZEN, ed.. Proceedings of the 24th Conference on Computational Natural Language Learning. Stroudsburg, PA:ACL, pp. 12-25. ISBN 978-1-952148-63-7. Available under: doi: 10.18653/v1/2020.conll-1.2BibTex
@inproceedings{Sood2020Inter-59698, year={2020}, doi={10.18653/v1/2020.conll-1.2}, title={Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension}, isbn={978-1-952148-63-7}, publisher={ACL}, address={Stroudsburg, PA}, booktitle={Proceedings of the 24th Conference on Computational Natural Language Learning}, pages={12--25}, editor={Fernández, Raquel and Linzen, Tal}, author={Sood, Ekta and Tannert, Simon and Frassinelli, Diego and Bulling, Andreas and Vu, Ngoc Thang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59698"> <dc:creator>Vu, Ngoc Thang</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Tannert, Simon</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:creator>Sood, Ekta</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/> <dc:creator>Tannert, Simon</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:abstract xml:lang="eng">While neural networks with attention mechanisms have achieved superior performance on many natural language processing tasks, it remains unclear to which extent learned attention resembles human visual attention. In this paper, we propose a new method that leverages eye-tracking data to investigate the relationship between human visual attention and neural attention in machine reading comprehension. To this end, we introduce a novel 23 participant eye tracking dataset - MQA-RC, in which participants read movie plots and answered pre-defined questions. We compare state of the art networks based on long short-term memory (LSTM), convolutional neural models (CNN) and XLNet Transformer architectures. We find that higher similarity to human attention and performance significantly correlates to the LSTM and CNN models. However, we show this relationship does not hold true for the XLNet models – despite the fact that the XLNet performs best on this challenging task. Our results suggest that different architectures seem to learn rather different neural attention strategies and similarity of neural to human attention does not guarantee best performance.</dcterms:abstract> <dcterms:title>Interpreting Attention Models with Human Visual Attention in Machine Reading Comprehension</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59698/1/Sood_2-1idyw6jldeod6.pdf"/> <dc:contributor>Vu, Ngoc Thang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-12T14:40:30Z</dcterms:available> <dc:contributor>Sood, Ekta</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Bulling, Andreas</dc:contributor> <dc:contributor>Frassinelli, Diego</dc:contributor> <dc:creator>Bulling, Andreas</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Frassinelli, Diego</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59698"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes