Unified representation of molecules and crystals for machine learning

Cite This

Files in this item

Checksum: MD5:3310acda3260e943a16421b0b1058a67

HUO, Haoyan, Matthias RUPP, 2022. Unified representation of molecules and crystals for machine learning. In: Machine Learning: Science and Technology. IOP Publishing. 3(4), 045017. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/aca005

@article{Huo2022Unifi-59261, title={Unified representation of molecules and crystals for machine learning}, year={2022}, doi={10.1088/2632-2153/aca005}, number={4}, volume={3}, journal={Machine Learning: Science and Technology}, author={Huo, Haoyan and Rupp, Matthias}, note={Article Number: 045017} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/59261"> <dc:creator>Rupp, Matthias</dc:creator> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59261"/> <dcterms:title>Unified representation of molecules and crystals for machine learning</dcterms:title> <dcterms:abstract xml:lang="eng">Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations, and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence for competitive energy and force prediction errors is presented for changes in molecular structure, crystal chemistry, and molecular dynamics using kernel regression and symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2022</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-23T13:19:16Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59261/3/Huo_2-19w1s7csvosh5.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Huo, Haoyan</dc:creator> <dc:contributor>Huo, Haoyan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>

Downloads since Nov 23, 2022 (Information about access statistics)

Huo_2-19w1s7csvosh5.pdf 25

This item appears in the following Collection(s)

Search KOPS


Browse

My Account