Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:20a588e10404482bc4287c458da0e1a6

BRANDES, Ulrik, Jürgen LERNER, 2006. Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities. In: KRÁLOVIČ, Rastislav, ed., Paweł URZYCZYN, ed.. Mathematical Foundations of Computer Science 2006. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 202-213. ISBN 978-3-540-37791-7

@inproceedings{Brandes2006Color-5918, title={Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities}, year={2006}, doi={10.1007/11821069_18}, number={4162}, isbn={978-3-540-37791-7}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Mathematical Foundations of Computer Science 2006}, pages={202--213}, editor={Královič, Rastislav and Urzyczyn, Paweł}, author={Brandes, Ulrik and Lerner, Jürgen} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5918"> <dc:language>eng</dc:language> <dc:creator>Lerner, Jürgen</dc:creator> <dcterms:title>Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5918"/> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> <dc:creator>Brandes, Ulrik</dc:creator> <dc:contributor>Lerner, Jürgen</dc:contributor> <dc:format>application/pdf</dc:format> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:rights>deposit-license</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:22Z</dc:date> <dcterms:abstract xml:lang="eng">Random 3-colorable graphs that are generated according to a G(n, p)-like model can be colored optimally, if p ≥ c/n for some large constant c. However, these methods fail in a model where the edgeprobabilities are non-uniform and not bounded away from zero. We present a spectral algorithm that succeeds in such situations.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:22Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Proceedings of the 31th International Symposium Mathematical Foundations of Computer Science (MFCS ´06) (LNCS 4162), 2006, pp. 202-213</dcterms:bibliographicCitation> <dcterms:issued>2006</dcterms:issued> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

bl_cr3cg_06.pdf 73

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto