KOPS - The Institutional Repository of the University of Konstanz

Critical analysis on the reproducibility of visual quality assessment using deep features

Critical analysis on the reproducibility of visual quality assessment using deep features

Cite This

Files in this item

Checksum: MD5:378bc536f60d1a4700344a5dd5a26d68

GÖTZ-HAHN, Franz, Vlad HOSU, Dietmar SAUPE, 2022. Critical analysis on the reproducibility of visual quality assessment using deep features. In: PLoS ONE. Public Library of Science (PLoS). 17(8), e0269715. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0269715

@article{GotzHahn2022Criti-59105, title={Critical analysis on the reproducibility of visual quality assessment using deep features}, year={2022}, doi={10.1371/journal.pone.0269715}, number={8}, volume={17}, journal={PLoS ONE}, author={Götz-Hahn, Franz and Hosu, Vlad and Saupe, Dietmar}, note={Article Number: e0269715} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/59105"> <dc:creator>Götz-Hahn, Franz</dc:creator> <dcterms:abstract xml:lang="eng">Data used to train supervised machine learning models are commonly split into independent training, validation, and test sets. This paper illustrates that complex data leakage cases have occurred in the no-reference image and video quality assessment literature. Recently, papers in several journals reported performance results well above the best in the field. However, our analysis shows that information from the test set was inappropriately used in the training process in different ways and that the claimed performance results cannot be achieved. When correcting for the data leakage, the performances of the approaches drop even below the state-of-the-art by a large margin. Additionally, we investigate end-to-end variations to the discussed approaches, which do not improve upon the original.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:22:25Z</dc:date> <dc:creator>Hosu, Vlad</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59105/1/Goetz-Hahn_2-1slsft0xvpsz07.pdf"/> <dcterms:issued>2022</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-10T13:22:25Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59105"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59105/1/Goetz-Hahn_2-1slsft0xvpsz07.pdf"/> <dcterms:title>Critical analysis on the reproducibility of visual quality assessment using deep features</dcterms:title> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Saupe, Dietmar</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Götz-Hahn, Franz</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Nov 10, 2022 (Information about access statistics)

Goetz-Hahn_2-1slsft0xvpsz07.pdf 23

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account