Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2008
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IMA Journal of Numerical Analysis ; 28 (2008), 2. - S. 274-291. - Oxford University Press (OUP). - ISSN 0272-4979. - eISSN 1464-3642
Zusammenfassung
In the present paper, we analyse the geometric properties of projected Runge–Kutta methods for the solution of index 3 differential–algebraic equations in the Hessenberg form. We show that the geometric phase portrait is well reproduced under discretization in the vicinity of equilibria, periodic orbits or asymptotically stable invariant sets. The main tools are embedding techniques and an invariant manifold theorem which allow a reduction of the problem to the classical ordinary differential equation case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690SCHROPP, Johannes, 2008. Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets. In: IMA Journal of Numerical Analysis. Oxford University Press (OUP). 28(2), pp. 274-291. ISSN 0272-4979. eISSN 1464-3642. Available under: doi: 10.1093/imanum/drm007
BibTex
@article{Schropp2008Proje-58675,
  year={2008},
  doi={10.1093/imanum/drm007},
  title={Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets},
  number={2},
  volume={28},
  issn={0272-4979},
  journal={IMA Journal of Numerical Analysis},
  pages={274--291},
  author={Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58675">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-22T07:26:25Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58675"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-22T07:26:25Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets</dcterms:title>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dcterms:abstract xml:lang="eng">In the present paper, we analyse the geometric properties of projected Runge–Kutta methods for the solution of index 3 differential–algebraic equations in the Hessenberg form. We show that the geometric phase portrait is well reproduced under discretization in the vicinity of equilibria, periodic orbits or asymptotically stable invariant sets. The main tools are embedding techniques and an invariant manifold theorem which allow a reduction of the problem to the classical ordinary differential equation case.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2008</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja