Uniform matrix product states from an algebraic geometer's point of view
Uniform matrix product states from an algebraic geometer's point of view
No Thumbnail Available
Files
There are no files associated with this item.
Date
2023
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Advances in Applied Mathematics ; 142 (2023). - 102417. - Elsevier. - ISSN 0196-8858. - eISSN 1090-2074
Abstract
We apply methods from algebraic geometry to study uniform matrix product states. Our main results concern the topology of the locus of tensors expressed as uMPS, their defining equations and identifiability. By an interplay of theorems from algebra, geometry and quantum physics we answer several questions and conjectures posed by Critch, Morton and Hackbusch.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
CZAPLIĆSKI, Adam, Mateusz MICHALEK, Tim SEYNNAEVE, 2023. Uniform matrix product states from an algebraic geometer's point of view. In: Advances in Applied Mathematics. Elsevier. 142, 102417. ISSN 0196-8858. eISSN 1090-2074. Available under: doi: 10.1016/j.aam.2022.102417BibTex
@article{Czaplinski2023Unifo-58629, year={2023}, doi={10.1016/j.aam.2022.102417}, title={Uniform matrix product states from an algebraic geometer's point of view}, volume={142}, issn={0196-8858}, journal={Advances in Applied Mathematics}, author={CzapliĆski, Adam and Michalek, Mateusz and Seynnaeve, Tim}, note={Article Number: 102417} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58629"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58629"/> <dc:contributor>CzapliĆski, Adam</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-15T07:46:07Z</dcterms:available> <dcterms:title>Uniform matrix product states from an algebraic geometer's point of view</dcterms:title> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We apply methods from algebraic geometry to study uniform matrix product states. Our main results concern the topology of the locus of tensors expressed as uMPS, their defining equations and identifiability. By an interplay of theorems from algebra, geometry and quantum physics we answer several questions and conjectures posed by Critch, Morton and Hackbusch.</dcterms:abstract> <dcterms:issued>2023</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Seynnaeve, Tim</dc:creator> <dc:creator>CzapliĆski, Adam</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-15T07:46:07Z</dc:date> <dc:contributor>Seynnaeve, Tim</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Michalek, Mateusz</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown