Immersive analytics : an overview

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

KLEIN, Karsten, Michael SEDLMAIR, Falk SCHREIBER, 2022. Immersive analytics : an overview. In: it - Information Technology. De Gruyter Oldenbourg. 64(4-5), pp. 155-168. ISSN 0013-5720. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0037

@article{Klein2022Immer-58592, title={Immersive analytics : an overview}, year={2022}, doi={10.1515/itit-2022-0037}, number={4-5}, volume={64}, issn={0013-5720}, journal={it - Information Technology}, pages={155--168}, author={Klein, Karsten and Sedlmair, Michael and Schreiber, Falk} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58592"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58592"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Klein, Karsten</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-12T06:05:24Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Sedlmair, Michael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Sedlmair, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:title>Immersive analytics : an overview</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:creator>Klein, Karsten</dc:creator> <dc:creator>Schreiber, Falk</dc:creator> <dcterms:issued>2022</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Immersive Analytics is concerned with the systematic examination of the benefits and challenges of using immersive environments for data analysis, and the development of corresponding designs that improve the quality and efficiency of the analysis process. While immersive technologies are now broadly available, practical solutions haven’t received broad acceptance in real-world applications outside of several core areas, and proper guidelines on the design of such solutions are still under development. Both fundamental research and applications bring together topics and questions from several fields, and open a wide range of directions regarding underlying theory, evidence from user studies, and practical solutions tailored towards the requirements of application areas. We give an overview on the concepts, topics, research questions, and challenges.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-12T06:05:24Z</dc:date> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account