KOPS - The Institutional Repository of the University of Konstanz

Fixing the rotating-wave approximation for strongly detuned quantum oscillators

Fixing the rotating-wave approximation for strongly detuned quantum oscillators

Cite This

Files in this item

Checksum: MD5:09e1320d5e8b69eeaff39f1d232a9ae4

KOŠATA, Jan, Anina LEUCH, Tobias KÄSTLI, Oded ZILBERBERG, 2022. Fixing the rotating-wave approximation for strongly detuned quantum oscillators. In: Physical Review Research. American Physical Society. 4(3), 033177. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.4.033177

@article{Kosata2022-09-06Fixin-58573, title={Fixing the rotating-wave approximation for strongly detuned quantum oscillators}, year={2022}, doi={10.1103/PhysRevResearch.4.033177}, number={3}, volume={4}, journal={Physical Review Research}, author={Košata, Jan and Leuch, Anina and Kästli, Tobias and Zilberberg, Oded}, note={Article Number: 033177} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58573"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:title>Fixing the rotating-wave approximation for strongly detuned quantum oscillators</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Košata, Jan</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58573/1/Kosata_2-a46og35k81sp2.pdf"/> <dc:contributor>Leuch, Anina</dc:contributor> <dcterms:issued>2022-09-06</dcterms:issued> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T11:03:04Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Kästli, Tobias</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Leuch, Anina</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58573/1/Kosata_2-a46og35k81sp2.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T11:03:04Z</dcterms:available> <dc:creator>Zilberberg, Oded</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Košata, Jan</dc:creator> <dc:creator>Kästli, Tobias</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58573"/> <dcterms:abstract xml:lang="eng">Periodically driven oscillators are commonly described in a frame corotating with the drive and using the rotating-wave approximation (RWA). This description, however, is known to induce errors for off-resonant driving. Here, we show that the standard quantum description, using the creation and annihilation of particles with the oscillators' natural frequency, necessarily leads to incorrect results when combined with the RWA. We demonstrate this on the simple (quantum) harmonic oscillator and present an alternative operator basis that reconciles the RWA with off-resonant driving. The approach is also applicable to more complex models, where it accounts for known discrepancies. As an example, we demonstrate the advantage of our scheme on a driven quantum Duffing oscillator.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Downloads since Sep 8, 2022 (Information about access statistics)

Kosata_2-a46og35k81sp2.pdf 33

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account