Kronecker limit formulas for parabolic, hyperbolic and elliptic Eisenstein series via Borcherds products

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Authors
Schwagenscheidt, Markus
Völz, Fabian
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of Number Theory ; 225 (2021). - pp. 18-58. - Elsevier. - ISSN 0022-314X. - eISSN 1096-1658
Abstract
The classical Kronecker limit formula describes the constant term in the Laurent expansion at the first order pole of the non-holomorphic Eisenstein series associated to the cusp at infinity of the modular group. Recently, the meromorphic continuation and Kronecker limit type formulas were investigated for non-holomorphic Eisenstein series associated to hyperbolic and elliptic elements of a Fuchsian group of the first kind by Jorgenson, Kramer and the first named author. In the present work, we realize averaged versions of all three types of Eisenstein series for as regularized theta lifts of a single type of Poincaré series, due to Selberg. Using this realization and properties of the Poincaré series we derive the meromorphic continuation and Kronecker limit formulas for the above Eisenstein series. The corresponding Kronecker limit functions are then given by the logarithm of the absolute value of the Borcherds product associated to a special value of the underlying Poincaré series.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
CM-values, Harmonic Maass forms, Meromorphic modular forms, Regularized Petersson inner products, Theta lifts, Weakly holomorphic modular forms
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690VON PIPPICH, Anna-Maria, Markus SCHWAGENSCHEIDT, Fabian VÖLZ, 2021. Kronecker limit formulas for parabolic, hyperbolic and elliptic Eisenstein series via Borcherds products. In: Journal of Number Theory. Elsevier. 225, pp. 18-58. ISSN 0022-314X. eISSN 1096-1658. Available under: doi: 10.1016/j.jnt.2021.01.010
BibTex
@article{vonPippich2021Krone-58556,
  year={2021},
  doi={10.1016/j.jnt.2021.01.010},
  title={Kronecker limit formulas for parabolic, hyperbolic and elliptic Eisenstein series via Borcherds products},
  volume={225},
  issn={0022-314X},
  journal={Journal of Number Theory},
  pages={18--58},
  author={von Pippich, Anna-Maria and Schwagenscheidt, Markus and Völz, Fabian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58556">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>von Pippich, Anna-Maria</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:creator>Völz, Fabian</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dc:contributor>Völz, Fabian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Schwagenscheidt, Markus</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>von Pippich, Anna-Maria</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:21:07Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">The classical Kronecker limit formula describes the constant term in the Laurent expansion at the first order pole of the non-holomorphic Eisenstein series associated to the cusp at infinity of the modular group. Recently, the meromorphic continuation and Kronecker limit type formulas were investigated for non-holomorphic Eisenstein series associated to hyperbolic and elliptic elements of a Fuchsian group of the first kind by Jorgenson, Kramer and the first named author. In the present work, we realize averaged versions of all three types of Eisenstein series for as regularized theta lifts of a single type of Poincaré series, due to Selberg. Using this realization and properties of the Poincaré series we derive the meromorphic continuation and Kronecker limit formulas for the above Eisenstein series. The corresponding Kronecker limit functions are then given by the logarithm of the absolute value of the Borcherds product associated to a special value of the underlying Poincaré series.</dcterms:abstract>
    <dcterms:title>Kronecker limit formulas for parabolic, hyperbolic and elliptic Eisenstein series via Borcherds products</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58556"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:21:07Z</dc:date>
    <dcterms:issued>2021</dcterms:issued>
    <dc:contributor>Schwagenscheidt, Markus</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes