Guide to Intelligent Data Science : How to Intelligently Make Use of Real Data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
978-3-030-45573-6
Bibliografische Daten
Verlag
Cham: Springer Cham
Schriftenreihe
Texts in Computer Science
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Monographie
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
KNIME, bioinformatics, calculus, classification, cognition, data analysis, databases, knowledge, modeling, pattern recognition, statistics
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BERTHOLD, Michael R., Christian BORGELT, Frank HÖPPNER, Frank KLAWONN, Rosaria SILIPO, 2020. Guide to Intelligent Data Science : How to Intelligently Make Use of Real Data. Cham: Springer Cham. ISBN 978-3-030-45573-6
BibTex
@book{Berthold2020Guide-58553,
  year={2020},
  doi={10.1007/978-3-030-45574-3},
  isbn={978-3-030-45573-6},
  publisher={Springer Cham},
  address={Cham},
  series={Texts in Computer Science},
  title={Guide to Intelligent Data Science : How to Intelligently Make Use of Real Data},
  author={Berthold, Michael R. and Borgelt, Christian and Höppner, Frank and Klawonn, Frank and Silipo, Rosaria}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58553">
    <dc:publisher>Cham</dc:publisher>
    <dc:creator>Klawonn, Frank</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:07:21Z</dcterms:available>
    <dc:creator>Silipo, Rosaria</dc:creator>
    <dc:creator>Höppner, Frank</dc:creator>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <dcterms:title>Guide to Intelligent Data Science : How to Intelligently Make Use of Real Data</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Silipo, Rosaria</dc:contributor>
    <dc:publisher>Springer Cham</dc:publisher>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:issn>978-3-030-45573-6</bibo:issn>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:07:21Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58553"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included.</dcterms:abstract>
    <dc:contributor>Klawonn, Frank</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja