Machine learning meets visualization : Experiences and lessons learned

Thumbnail Image
Date
2022
Authors
Ngo, Quynh Quang
Sedlmair, Michael
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
it - Information Technology ; 64 (2022), 4-5. - pp. 169-180. - De Gruyter Oldenbourg. - ISSN 2081-3856. - eISSN 2196-7032
Abstract
In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Visual analytics; machine-learning; quality metrics; dimensionality reduction
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690NGO, Quynh Quang, Frederik L. DENNIG, Daniel A. KEIM, Michael SEDLMAIR, 2022. Machine learning meets visualization : Experiences and lessons learned. In: it - Information Technology. De Gruyter Oldenbourg. 64(4-5), pp. 169-180. ISSN 2081-3856. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0034
BibTex
@article{Ngo2022-09-02Machi-58499,
  year={2022},
  doi={10.1515/itit-2022-0034},
  title={Machine learning meets visualization : Experiences and lessons learned},
  number={4-5},
  volume={64},
  issn={2081-3856},
  journal={it - Information Technology},
  pages={169--180},
  author={Ngo, Quynh Quang and Dennig, Frederik L. and Keim, Daniel A. and Sedlmair, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58499">
    <dc:creator>Ngo, Quynh Quang</dc:creator>
    <dc:creator>Dennig, Frederik L.</dc:creator>
    <dc:contributor>Ngo, Quynh Quang</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58499/1/Ngo_2-n8aqwbi3iil62.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dc:date>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58499/1/Ngo_2-n8aqwbi3iil62.pdf"/>
    <dc:contributor>Dennig, Frederik L.</dc:contributor>
    <dcterms:title>Machine learning meets visualization : Experiences and lessons learned</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2022-09-02</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58499"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes