Machine learning meets visualization : Experiences and lessons learned

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

NGO, Quynh Quang, Frederik L. DENNIG, Daniel A. KEIM, Michael SEDLMAIR, 2022. Machine learning meets visualization : Experiences and lessons learned. In: it - Information Technology. De Gruyter Oldenbourg. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0034

@article{Ngo2022Machi-58499, title={Machine learning meets visualization : Experiences and lessons learned}, year={2022}, doi={10.1515/itit-2022-0034}, journal={it - Information Technology}, author={Ngo, Quynh Quang and Dennig, Frederik L. and Keim, Daniel A. and Sedlmair, Michael} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58499"> <dc:creator>Ngo, Quynh Quang</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Dennig, Frederik L.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Sedlmair, Michael</dc:creator> <dcterms:abstract xml:lang="eng">In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.</dcterms:abstract> <dcterms:title>Machine learning meets visualization : Experiences and lessons learned</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Ngo, Quynh Quang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58499"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Dennig, Frederik L.</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dcterms:available> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2022</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account