Machine learning meets visualization : Experiences and lessons learned

Lade...
Vorschaubild
Dateien
Ngo_2-n8aqwbi3iil62.pdf
Ngo_2-n8aqwbi3iil62.pdfGröße: 1.22 MBDownloads: 49
Datum
2022
Autor:innen
Ngo, Quynh Quang
Sedlmair, Michael
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 169-180. ISSN 2081-3856. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0034
Zusammenfassung

In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Visual analytics; machine-learning; quality metrics; dimensionality reduction
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690NGO, Quynh Quang, Frederik L. DENNIG, Daniel A. KEIM, Michael SEDLMAIR, 2022. Machine learning meets visualization : Experiences and lessons learned. In: it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 169-180. ISSN 2081-3856. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0034
BibTex
@article{Ngo2022-09-02Machi-58499,
  year={2022},
  doi={10.1515/itit-2022-0034},
  title={Machine learning meets visualization : Experiences and lessons learned},
  number={4-5},
  volume={64},
  issn={2081-3856},
  journal={it - Information Technology},
  pages={169--180},
  author={Ngo, Quynh Quang and Dennig, Frederik L. and Keim, Daniel A. and Sedlmair, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58499">
    <dc:creator>Ngo, Quynh Quang</dc:creator>
    <dc:creator>Dennig, Frederik L.</dc:creator>
    <dc:contributor>Ngo, Quynh Quang</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58499/1/Ngo_2-n8aqwbi3iil62.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Sedlmair, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dc:date>
    <dc:contributor>Sedlmair, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-06T09:02:48Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58499/1/Ngo_2-n8aqwbi3iil62.pdf"/>
    <dc:contributor>Dennig, Frederik L.</dc:contributor>
    <dcterms:title>Machine learning meets visualization : Experiences and lessons learned</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2022-09-02</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58499"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja