Efficient scalarization in multiobjective optimal control of a nonsmooth PDE
Efficient scalarization in multiobjective optimal control of a nonsmooth PDE
Date
2022
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Computational Optimization and Applications ; 83 (2022), 2. - pp. 435-464. - Springer. - ISSN 0926-6003. - eISSN 1573-2894
Abstract
This work deals with the efficient numerical characterization of Pareto stationary fronts for multiobjective optimal control problems with a moderate number of cost functionals and a mildly nonsmooth, elliptic, semilinear PDE-constraint. When “ample” controls are considered, strong stationarity conditions that can be used to numerically characterize the Pareto stationary fronts are known for our problem. We show that for finite dimensional controls, a sufficient adjoint-based stationarity system remains obtainable. It turns out that these stationarity conditions remain useful when numerically characterizing the fronts, because they correspond to strong stationarity systems for problems obtained by application of weighted-sum and reference point techniques to the multiobjective problem. We compare the performance of both scalarization techniques using quantifiable measures for the approximation quality. The subproblems of either method are solved with a line-search globalized pseudo-semismooth Newton method that appears to remove the degenerate behavior of the local version of the method employed previously. We apply a matrix-free, iterative approach to deal with the memory and complexity requirements when solving the subproblems of the reference point method and compare several preconditioning approaches.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Multiobjective optimal control, Nonsmooth optimization, Stationarity conditions, Pareto optimality, Scalarization methods, Pseudo-semismooth Newton method
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BERNREUTHER, Marco, Georg MÜLLER, Stefan VOLKWEIN, 2022. Efficient scalarization in multiobjective optimal control of a nonsmooth PDE. In: Computational Optimization and Applications. Springer. 83(2), pp. 435-464. ISSN 0926-6003. eISSN 1573-2894. Available under: doi: 10.1007/s10589-022-00390-yBibTex
@article{Bernreuther2022-11Effic-58473, year={2022}, doi={10.1007/s10589-022-00390-y}, title={Efficient scalarization in multiobjective optimal control of a nonsmooth PDE}, number={2}, volume={83}, issn={0926-6003}, journal={Computational Optimization and Applications}, pages={435--464}, author={Bernreuther, Marco and Müller, Georg and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58473"> <dcterms:issued>2022-11</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-01T12:19:48Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">This work deals with the efficient numerical characterization of Pareto stationary fronts for multiobjective optimal control problems with a moderate number of cost functionals and a mildly nonsmooth, elliptic, semilinear PDE-constraint. When “ample” controls are considered, strong stationarity conditions that can be used to numerically characterize the Pareto stationary fronts are known for our problem. We show that for finite dimensional controls, a sufficient adjoint-based stationarity system remains obtainable. It turns out that these stationarity conditions remain useful when numerically characterizing the fronts, because they correspond to strong stationarity systems for problems obtained by application of weighted-sum and reference point techniques to the multiobjective problem. We compare the performance of both scalarization techniques using quantifiable measures for the approximation quality. The subproblems of either method are solved with a line-search globalized pseudo-semismooth Newton method that appears to remove the degenerate behavior of the local version of the method employed previously. We apply a matrix-free, iterative approach to deal with the memory and complexity requirements when solving the subproblems of the reference point method and compare several preconditioning approaches.</dcterms:abstract> <dcterms:title>Efficient scalarization in multiobjective optimal control of a nonsmooth PDE</dcterms:title> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Bernreuther, Marco</dc:creator> <dc:contributor>Müller, Georg</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58473/1/Bernreuther_2-66sks1nn2v5i1.pdf"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Müller, Georg</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Volkwein, Stefan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Bernreuther, Marco</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58473/1/Bernreuther_2-66sks1nn2v5i1.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-01T12:19:48Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58473"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown