Second-order topological modes in two-dimensional continuous media

Cite This

Files in this item

Checksum: MD5:c2f55b0d647c2896866f64cd64944b47

KOŠATA, Jan, Oded ZILBERBERG, 2021. Second-order topological modes in two-dimensional continuous media. In: Physical Review Research. American Physical Society (APS). 3(3), 032029. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.3.L032029

@article{Kosata2021-03-09T12:54:05ZSecon-58459, title={Second-order topological modes in two-dimensional continuous media}, year={2021}, doi={10.1103/PhysRevResearch.3.L032029}, number={3}, volume={3}, journal={Physical Review Research}, author={Košata, Jan and Zilberberg, Oded}, note={Article Number: 032029} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Zilberberg, Oded</dc:contributor> <bibo:uri rdf:resource=""/> <dcterms:issued>2021-03-09T12:54:05Z</dcterms:issued> <dc:contributor>Košata, Jan</dc:contributor> <dcterms:title>Second-order topological modes in two-dimensional continuous media</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Zilberberg, Oded</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Košata, Jan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:date rdf:datatype="">2022-08-31T13:41:58Z</dc:date> <dspace:hasBitstream rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dcterms:available rdf:datatype="">2022-08-31T13:41:58Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">We present a symmetry-based scheme to create 0D second-order topological modes in continuous 2D systems. We show that a metamaterial with p6m-symmetric pattern exhibits two Dirac cones, which can be gapped in two distinct ways by deforming the pattern. Combining the deformations in a single system then emulates the 2D Jackiw-Rossi model of a topological vortex, where 0D in-gap bound modes are guaranteed to exist. We exemplify our approach with simple hexagonal, Kagome and honeycomb lattices. We furthermore formulate a quantitative method to extract the topological properties from finite-element simulations, which facilitates further optimization of the bound mode characteristics. Our scheme enables the realization of second-order topology in a wide range of experimental systems.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Downloads since Aug 31, 2022 (Information about access statistics)

Kosata_2-1qgmbr2yy1qfn4.pdf 8

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account