Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Applications of large-scale mobile multirobot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability. Developing controllers for multirobot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model. Automatic design using machine learning or evolutionary robotics seem to be options to avoid that challenge, but bring the challenge of designing reward or fitness functions. Generic reward and fitness functions seem unlikely to exist and task-specific rewards often have undesired side effects. Approaches of so-called innate motivation try to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity. Our approach to innate motivation is to minimize surprise, which we implement by maximizing the accuracy of the swarm robot's sensor predictions using neuroevolution. A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop. In this article, we summarize our previous simulation-based results concerning behavioral diversity, robustness, scalability, and engineered self-organization, and put them into context. In several new studies, we analyze the influence of the optimizer's hyperparameters, the scalability of evolved behaviors, and the impact of realistic robot simulations. Finally, we present results using real robots that show how the reality gap can be bridged.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAISER, Tanja Katharina, Heiko HAMANN, 2021. Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments. In: IEEE Transactions on Robotics. IEEE. 2021, 38(6), S. 3582-3601. ISSN 1042-296X. eISSN 1941-0468. Verfügbar unter: doi: 10.1109/TRO.2022.3181004BibTex
@article{Kaiser2021-02Innat-58411, year={2021}, doi={10.1109/TRO.2022.3181004}, title={Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments}, number={6}, volume={38}, issn={1042-296X}, journal={IEEE Transactions on Robotics}, pages={3582--3601}, author={Kaiser, Tanja Katharina and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58411"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T06:54:16Z</dc:date> <dcterms:title>Innate Motivation for Robot Swarms by Minimizing Surprise : From Simple Simulations to Real-World Experiments</dcterms:title> <dc:creator>Kaiser, Tanja Katharina</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Applications of large-scale mobile multirobot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability. Developing controllers for multirobot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model. Automatic design using machine learning or evolutionary robotics seem to be options to avoid that challenge, but bring the challenge of designing reward or fitness functions. Generic reward and fitness functions seem unlikely to exist and task-specific rewards often have undesired side effects. Approaches of so-called innate motivation try to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity. Our approach to innate motivation is to minimize surprise, which we implement by maximizing the accuracy of the swarm robot's sensor predictions using neuroevolution. A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop. In this article, we summarize our previous simulation-based results concerning behavioral diversity, robustness, scalability, and engineered self-organization, and put them into context. In several new studies, we analyze the influence of the optimizer's hyperparameters, the scalability of evolved behaviors, and the impact of realistic robot simulations. Finally, we present results using real robots that show how the reality gap can be bridged.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58411"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kaiser, Tanja Katharina</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:issued>2021-02</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T06:54:16Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58411/1/Kaiser_2-w6q0enei95ew7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58411/1/Kaiser_2-w6q0enei95ew7.pdf"/> </rdf:Description> </rdf:RDF>