KOPS - The Institutional Repository of the University of Konstanz

Stabilization of nonautonomous parabolic equations by a single moving actuator

Stabilization of nonautonomous parabolic equations by a single moving actuator

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

AZMI, Behzad, Karl KUNISCH, Sérgio S. RODRIGUES, 2021. Stabilization of nonautonomous parabolic equations by a single moving actuator. In: Discrete and Continuous Dynamical Systems. American Institute of Mathematical Sciences (AIMS). 41(12), pp. 5789-5824. ISSN 1078-0947. eISSN 1553-5231. Available under: doi: 10.3934/dcds.2021096

@article{Azmi2021Stabi-58388, title={Stabilization of nonautonomous parabolic equations by a single moving actuator}, year={2021}, doi={10.3934/dcds.2021096}, number={12}, volume={41}, issn={1078-0947}, journal={Discrete and Continuous Dynamical Systems}, pages={5789--5824}, author={Azmi, Behzad and Kunisch, Karl and Rodrigues, Sérgio S.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58388"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rodrigues, Sérgio S.</dc:contributor> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kunisch, Karl</dc:creator> <dc:creator>Rodrigues, Sérgio S.</dc:creator> <dcterms:issued>2021</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">It is shown that an internal control based on a moving indicator function is able to stabilize the state of parabolic equations evolving in rectangular domains. For proving the stabilizability result, we start with a control obtained from an oblique projection feedback based on a finite number of static actuators, then we used the continuity of the state when the control varies in a relaxation metric to construct a switching control where at each given instant of time only one of the static actuators is active, finally we construct the moving control by traveling between the static actuators. Numerical computations are performed by a concatenation procedure following a receding horizon control approach. They confirm the stabilizing performance of the moving control.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-26T07:40:11Z</dc:date> <dc:creator>Azmi, Behzad</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58388"/> <dc:contributor>Kunisch, Karl</dc:contributor> <dc:contributor>Azmi, Behzad</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-26T07:40:11Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Stabilization of nonautonomous parabolic equations by a single moving actuator</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account