A Weak Scalability Analysis For Optimized Schwarz Methods

No Thumbnail Available
Date
2019
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Bachelor thesis
Publication status
Published
Published in
Abstract
Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Domain Decomposition, Elliptic PDEs, Weak Scalability, Optimized Schwarz Methods, Fourier Analysis
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KARTMANN, Michael, 2019. A Weak Scalability Analysis For Optimized Schwarz Methods [Bachelor thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Kartmann2019Scala-58353,
  year={2019},
  title={A Weak Scalability Analysis For Optimized Schwarz Methods},
  address={Konstanz},
  school={Universität Konstanz},
  author={Kartmann, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58353">
    <dc:language>eng</dc:language>
    <dc:creator>Kartmann, Michael</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58353"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>A Weak Scalability Analysis For Optimized Schwarz Methods</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kartmann, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
University note
Konstanz, Universität Konstanz, Bachelor thesis, 2020
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed