Density Equalizing Distortion of Large Geographic Point Sets

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:b8025648a480410d6e46ebb14f12f15a

BAK, Peter, Matthias SCHÄFER, Andreas STOFFEL, Daniel A. KEIM, Itzhak OMER, 2009. Density Equalizing Distortion of Large Geographic Point Sets. In: Cartography and Geographic Information Science. 36(3), pp. 237-250

@article{Bak2009Densi-5819, title={Density Equalizing Distortion of Large Geographic Point Sets}, year={2009}, doi={10.1559/152304009788988288}, number={3}, volume={36}, journal={Cartography and Geographic Information Science}, pages={237--250}, author={Bak, Peter and Schäfer, Matthias and Stoffel, Andreas and Keim, Daniel A. and Omer, Itzhak} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5819"> <dc:rights>deposit-license</dc:rights> <dc:contributor>Omer, Itzhak</dc:contributor> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Stoffel, Andreas</dc:creator> <dcterms:issued>2009</dcterms:issued> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Bak, Peter</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:22Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Stoffel, Andreas</dc:contributor> <dcterms:title>Density Equalizing Distortion of Large Geographic Point Sets</dcterms:title> <dc:creator>Bak, Peter</dc:creator> <dc:format>application/pdf</dc:format> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5819"/> <dc:creator>Schäfer, Matthias</dc:creator> <dc:contributor>Schäfer, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">Visualizing large geo-demographical datasets using pixel-based techniques involves mapping the geospatial dimensions of a data point to screen coordinates and appropriately encoding its statistical value by color. The analysis of such data presents a great challenge. General tasks involve clustering, categorization, and searching for patterns of interest for sociological or economic research. Available visual encodings and screen space limitations lead to over-plotting and hiding of patterns and clusters in densely populated areas, while sparsely populated areas waste space and draw the attention away from the areas of interest. In this paper. two new approaches (RadialScale and AngularScale) are introduced to create density-equalized maps, while preserving recognizable features and neighborhoods in the visualization . These approaches build the core of a multi-scaling technique based on local features of the data described as local minima and maxima of point density. Scaling is conducted several times around these features, which leads to more homogeneous distortions. Results are illustrated using several real-world datasets. Our evaluation shows that the proposed techniques outperform traditional techniques as regard the homogeneity of the resulting data distributions and therefore build a more appropriate basis for analytic purposes.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Cartography and Geographic Information Science ; 36 (2009), 3. - pp. 237-250</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:22Z</dcterms:available> <dc:creator>Omer, Itzhak</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Bak_2009_DensitiyEqualizing.pdf 264

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto