Viscous Hamilton–Jacobi equations in exponential Orlicz hearts

No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal de Mathématiques Pures et Appliquées ; 163 (2022). - pp. 654-672. - Elsevier. - ISSN 0021-7824. - eISSN 1776-3371
Abstract
We provide a semigroup approach to viscous Hamilton–Jacobi equations. It turns out that exponential Orlicz hearts are suitable spaces to handle the (quadratic) non-linearity of the Hamiltonian. Based on an abstract extension result for nonlinear semigroups on spaces of continuous functions, we represent the solution of the viscous Hamilton–Jacobi equation as a strongly continuous convex semigroup on an exponential Orlicz heart. As a result, the solution depends continuously on the initial data. Furthermore, we determine the so-called symmetric Lipschitz set which is invariant under the semigroup. This automatically yields a priori estimates and regularity in Sobolev spaces. In particular, on the domain restricted to the symmetric Lipschitz set, the generator can be explicitly determined and linked with the viscous Hamilton–Jacobi equation.
Summary in another language
Nous proposons une approche par semigroupe de l'équation visqueuse de Hamilton–Jacobi. Il s'avère que les cœurs d'Orlicz exponentiels sont des espaces appropriés pour traiter la non-linéarité (quadratique) du Hamiltonien. Sur la base d'un résultat d'extension abstrait pour les semigroupes non linéaires sur des espaces de fonctions continues, nous représentons la solution de l'équation de Hamilton–Jacobi visqueuse comme un semigroupe convexe fortement continu sur un cœur d'Orlicz exponentiel. Par conséquent, la solution dépend continuellement des données initiales. Nous déterminons en outre ce que l'on appelle l'ensemble symétrique de Lipschitz qui est invariant sous le semigroupe. Cela donne automatiquement des estimations a priori et une régularité dans les espaces de Sobolev. En particulier, sur le domaine restreint à l'ensemble symétrique de Lipschitz, le générateur peut être déterminé explicitement et lié à l'équation visqueuse de Hamilton–Jacobi.
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BLESSING, Jonas, Michael KUPPER, 2022. Viscous Hamilton–Jacobi equations in exponential Orlicz hearts. In: Journal de Mathématiques Pures et Appliquées. Elsevier. 163, pp. 654-672. ISSN 0021-7824. eISSN 1776-3371. Available under: doi: 10.1016/j.matpur.2022.05.018
BibTex
@article{Blessing2022Visco-58053,
  year={2022},
  doi={10.1016/j.matpur.2022.05.018},
  title={Viscous Hamilton–Jacobi equations in exponential Orlicz hearts},
  volume={163},
  issn={0021-7824},
  journal={Journal de Mathématiques Pures et Appliquées},
  pages={654--672},
  author={Blessing, Jonas and Kupper, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58053">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58053"/>
    <dc:contributor>Blessing, Jonas</dc:contributor>
    <dc:creator>Kupper, Michael</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Viscous Hamilton–Jacobi equations in exponential Orlicz hearts</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-15T06:52:26Z</dc:date>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We provide a semigroup approach to viscous Hamilton–Jacobi equations. It turns out that exponential Orlicz hearts are suitable spaces to handle the (quadratic) non-linearity of the Hamiltonian. Based on an abstract extension result for nonlinear semigroups on spaces of continuous functions, we represent the solution of the viscous Hamilton–Jacobi equation as a strongly continuous convex semigroup on an exponential Orlicz heart. As a result, the solution depends continuously on the initial data. Furthermore, we determine the so-called symmetric Lipschitz set which is invariant under the semigroup. This automatically yields a priori estimates and regularity in Sobolev spaces. In particular, on the domain restricted to the symmetric Lipschitz set, the generator can be explicitly determined and linked with the viscous Hamilton–Jacobi equation.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-15T06:52:26Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Blessing, Jonas</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes