Adaptive Active Classification of Cell Assay Images

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:94deb7abde331be89750583b48b5f079

CEBRON, Nicolas, Michael R. BERTHOLD, 2006. Adaptive Active Classification of Cell Assay Images. In: FÜRNKRANZ, Johannes, ed. and others. Knowledge Discovery in Databases: PKDD 2006. Berlin:Springer, pp. 79-90

@incollection{Cebron2006Adapt-5795, title={Adaptive Active Classification of Cell Assay Images}, year={2006}, address={Berlin}, publisher={Springer}, booktitle={Knowledge Discovery in Databases: PKDD 2006}, pages={79--90}, editor={Fürnkranz, Johannes}, author={Cebron, Nicolas and Berthold, Michael R.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/5795"> <dc:language>eng</dc:language> <dc:rights>deposit-license</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:09Z</dcterms:available> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">Classifying large datasets without any a-priori information poses a problem in many tasks. Especially in the field of bioinformatics, often huge unlabeled datasets have to be explored mostly manually by a biology expert. In this work we consider an application that is motivated by the development of high-throughput microscope screening cameras. These devices are able to produce hundreds of thousands of images per day.We propose a new adaptive active classification scheme which establishes ties between the two opposing concepts of unsupervised clustering of the underlying data and the supervised task of classification. Based on Fuzzy c-means clustering and Learning Vector Quantization, the scheme allows for an initial clustering of large datasets and subsequently for the adjustment of the classification based on a small number of carefully chosen examples. Motivated by the concept of active learning, the learner tries to query the most informative examples in the learning process and therefore keeps the costs for supervision at a low level. We compare our approach to Learning Vector Quantization with random selection and Support Vector Machines with Active Learning on several datasets.</dcterms:abstract> <dc:contributor>Cebron, Nicolas</dc:contributor> <dcterms:issued>2006</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5795"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:title>Adaptive Active Classification of Cell Assay Images</dcterms:title> <dcterms:bibliographicCitation>First publ. in: Knowledge Discovery in Databases: PKDD 2006 / Johannes Fürnkranz ... (eds.). - Berlin: Springer, 2006, pp. 79-90</dcterms:bibliographicCitation> <dc:creator>Cebron, Nicolas</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:09Z</dc:date> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-nc-nd/2.0/legalcode"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

CeBe06_aac_pkdd.pdf 104

Das Dokument erscheint in:

deposit-license Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: deposit-license

KOPS Suche


Stöbern

Mein Benutzerkonto