KOPS - The Institutional Repository of the University of Konstanz

Amplitude equations for SPDEs driven by fractional additive noise with small hurst parameter

Amplitude equations for SPDEs driven by fractional additive noise with small hurst parameter

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BLÖMKER, Dirk, Alexandra NEAMTU, 2022. Amplitude equations for SPDEs driven by fractional additive noise with small hurst parameter. In: Stochastics and Dynamics. World Scientific Publishing. 22(3), 2240013. eISSN 0219-4937. Available under: doi: 10.1142/S0219493722400135

@article{Blomker2022Ampli-57941, title={Amplitude equations for SPDEs driven by fractional additive noise with small hurst parameter}, year={2022}, doi={10.1142/S0219493722400135}, number={3}, volume={22}, journal={Stochastics and Dynamics}, author={Blömker, Dirk and Neamtu, Alexandra}, note={Article Number: 2240013} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57941"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Blömker, Dirk</dc:contributor> <dcterms:title>Amplitude equations for SPDEs driven by fractional additive noise with small hurst parameter</dcterms:title> <dc:contributor>Neamtu, Alexandra</dc:contributor> <dc:creator>Neamtu, Alexandra</dc:creator> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-05T11:20:54Z</dcterms:available> <dcterms:abstract xml:lang="eng">We study stochastic partial differential equations (SPDEs) with potentially very rough fractional noise with Hurst parameter H∈(0,1). Close to a change of stability measured with a small parameter ε, we rely on the natural separation of time-scales and establish a simplified description of the essential dynamics. Up to an error term bounded by a power of ε depending on the Hurst parameter we can approximate the solution of the SPDE in first order by an SDE, the so-called amplitude equation, which describes the amplitude of the dominating pattern changing stability. In second order the approximation is given by a fast infinite-dimensional Ornstein–Uhlenbeck process. To this aim, we need to establish an explicit averaging result for stochastic integrals driven by rough fractional noise for small Hurst parameters.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57941"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-05T11:20:54Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Blömker, Dirk</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account